Interest rate convexity in a Gaussian framework (2024)

Antoine JacquierDepartment of Mathematics, Imperial College London, and the Alan Turing Institutea.jacquier@imperial.ac.ukandMugad OumgariUniversity College London and Lloyds BankingMugad.Oumgari@lloydsbanking.com

(Date: March 13, 2024)

Abstract.

The contributions of this paper are twofold:we define and investigate the properties of a short rate model driven by a general Gaussian Volterra process and, after defining precisely a notion of convexity adjustment, derive explicit formulae for it.

Key words and phrases:

interest rates, fractional Brownian motion, convexity adjustment

2010 Mathematics Subject Classification:

60G15, 91-10

The authors would like to thank Damiano Brigo for helpful comments.AJ is supported by the EPSRC grants EP/W032643/1 and EP/T032146/1.‘For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) licence (where permitted by UKRI, ‘Open Government Licence’ or ‘Creative Commons Attribution No-derivatives (CC BY-ND) licence’ may be stated instead) to any Author Accepted Manuscript version arising’.

1. Introduction and notations

1.1. Introduction

In fixed income markets, thedifferent schedules of payments and the diverse currencies, margins require specific adjustments in order to price all interest rate products consistently.This is usually referred to as convexity adjustment and has a deep impact on interest rate derivatives.Starting from[7, 9, 19],academics and practitioners alike have developed a series of formulae for this convexity adjustment in a variety of models,from simple stochastic rate models[16] to some incorporating stochastic volatility features[2].Recently, Garcia-Lorite and Merino[11] used Malliavin calculus techniques to compute approximations of this convexity adjustment for various interest rate products.Motivated by the new paradigm of rough volatility in Equity markets[4, 5, 8, 10, 12, 14, 15],we consider here stochastic dynamics for the short rate, driven by a general Gaussian Volterra process, providing more flexibility than standard Brownian motion.In the framework of the change of measure approach in[18],we introduce a clear definition of convexity adjustment for zero couponbonds, in Proposition2.11, namely as the non-martingale correction of ratios of zero-coupon prices under the forward measure, for which we are able to derive closed-form expressionsor asymptotic approximations.We introduce the model, derive its properties in Section2.In Section2.2, we define convexity adjustment and provide formulae for it, the main result of the paper, which we illustrate in some specific examples.Section3 provides some further expressions for liquid interest rate products, and we highlight some numerical aspects of the results in Section4.

1.2. Model and notations

On a given filtered probability space (Ω,,(t)t0,)Ωsubscriptsubscript𝑡𝑡0(\Omega,\mathcal{F},(\mathcal{F}_{t})_{t\geq 0},\mathbb{P})( roman_Ω , caligraphic_F , ( caligraphic_F start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 0 end_POSTSUBSCRIPT , blackboard_P ),we are interested in short rate dynamics of the form

(1.1)rt=θ(t)+0tφ(t,u)d𝔚u=θ(t)+(φ(t,)𝔚)t,subscript𝑟𝑡𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢differential-dsubscript𝔚𝑢𝜃𝑡subscript𝜑𝑡𝔚𝑡r_{t}=\theta(t)+\int_{0}^{t}\varphi(t,u)\mathrm{d}\mathfrak{W}_{u}=\theta(t)+%\left(\varphi(t,\cdot)\circ\mathfrak{W}\right)_{t},italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT = italic_θ ( italic_t ) + ( italic_φ ( italic_t , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ,

withθ𝜃\thetaitalic_θ a deterministic function and𝔚𝔚\mathfrak{W}fraktur_W a continuous Gaussian process adapted to the filtration (t)t0subscriptsubscript𝑡𝑡0(\mathcal{F}_{t})_{t\geq 0}( caligraphic_F start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 0 end_POSTSUBSCRIPT.Here and below, given a functionϕitalic-ϕ\phiitalic_ϕ and a stochastic processX𝑋Xitalic_X, we write(ϕX)a,b:=abϕ(s)dXsassignsubscriptitalic-ϕ𝑋𝑎𝑏superscriptsubscript𝑎𝑏italic-ϕ𝑠differential-dsubscript𝑋𝑠(\phi\circ X)_{a,b}:=\int_{a}^{b}\phi(s)\mathrm{d}X_{s}( italic_ϕ ∘ italic_X ) start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT := ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_ϕ ( italic_s ) roman_d italic_X start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT,and omita𝑎aitalic_a whenever a=0𝑎0a=0italic_a = 0.For some fixed time horizon T>0𝑇0T>0italic_T > 0,define further, for utT𝑢𝑡𝑇u\leq t\leq Titalic_u ≤ italic_t ≤ italic_T,

(1.2)ΞT(t,u):=tTφ(s,u)dsandΞT(u):=ΞT(u,u)formulae-sequenceassignsubscriptΞ𝑇𝑡𝑢superscriptsubscript𝑡𝑇𝜑𝑠𝑢differential-d𝑠andassignsubscriptΞ𝑇𝑢subscriptΞ𝑇𝑢𝑢\Xi_{T}(t,u):=-\int_{t}^{T}\varphi(s,u)\mathrm{d}s\qquad\text{and}\qquad\Xi_{T%}(u):=\Xi_{T}(u,u)roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) := - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s and roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) := roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u , italic_u )

as well as Θt,T:=tTθ(s)dsassignsubscriptΘ𝑡𝑇superscriptsubscript𝑡𝑇𝜃𝑠differential-d𝑠\Theta_{t,T}:=\displaystyle\int_{t}^{T}\theta(s)\mathrm{d}sroman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_θ ( italic_s ) roman_d italic_s.We consider a given risk-neutral probability measure\mathbb{Q}blackboard_Q, equivalent to\mathbb{P}blackboard_P, so that the price of the zero-coupon bond at timet𝑡titalic_t is given by

(1.3)Pt,T:=𝔼t[Bt,T],whereBt,T:=exp{tTrsds},formulae-sequenceassignsubscript𝑃𝑡𝑇subscriptsuperscript𝔼𝑡delimited-[]subscript𝐵𝑡𝑇whereassignsubscript𝐵𝑡𝑇superscriptsubscript𝑡𝑇subscript𝑟𝑠differential-d𝑠P_{t,T}:=\mathbb{E}^{\mathbb{Q}}_{t}\left[B_{t,T}\right],\qquad\text{where}%\qquad B_{t,T}:=\exp\left\{-\int_{t}^{T}r_{s}\mathrm{d}s\right\},italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := blackboard_E start_POSTSUPERSCRIPT blackboard_Q end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT [ italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT ] , where italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := roman_exp { - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s } ,

and we define the instantaneous forward rate process as

(1.4)ft,T:=TlogPt,T.assignsubscript𝑓𝑡𝑇subscript𝑇subscript𝑃𝑡𝑇f_{t,T}:=-\partial_{T}\log P_{t,T}.italic_f start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := - ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT roman_log italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT .
Remark 1.1.

For modelling purposes, we shall consider kernels of convolution type, namely

(1.5)φ(t,u)=φ(tu).𝜑𝑡𝑢𝜑𝑡𝑢\varphi(t,u)=\varphi(t-u).italic_φ ( italic_t , italic_u ) = italic_φ ( italic_t - italic_u ) .

1.3. Empirical motivation

The modelling framework above (and in particular the introduction of a potentially singular kernel)is motivated by empirical observations.Assume that the kernel is given by a power-law formφ(t,u)=(tu)H/12𝜑𝑡𝑢superscript𝑡𝑢limit-from𝐻absent12\varphi(t,u)=(t-u)^{H-/\frac{1}{2}}italic_φ ( italic_t , italic_u ) = ( italic_t - italic_u ) start_POSTSUPERSCRIPT italic_H - / divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT with H(0,1)𝐻01H\in(0,1)italic_H ∈ ( 0 , 1 ), and that𝔚𝔚\mathfrak{W}fraktur_W is a standard Brownian motion.To estimate the Hurst exponentH𝐻Hitalic_H, we follow the methodology devised in[12]for the instantaneous log volatility(although more refined and robust statistical estimation techniques are now available,we leave a detailed empirical analysis for future work) and compute it via the linear regression

log𝔼[|rt+Δrt|2]=2Hlog(Δ)+c,forΔ>0,formulae-sequence𝔼delimited-[]superscriptsubscript𝑟𝑡Δsubscript𝑟𝑡22𝐻Δ𝑐forΔ0\log\mathbb{E}[|r_{t+\Delta}-r_{t}|^{2}]=2H\log(\Delta)+c,\qquad\text{for }%\Delta>0,roman_log blackboard_E [ | italic_r start_POSTSUBSCRIPT italic_t + roman_Δ end_POSTSUBSCRIPT - italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] = 2 italic_H roman_log ( roman_Δ ) + italic_c , for roman_Δ > 0 ,

for some constantc𝑐citalic_c.Of course such a linear regression hinges on some assumptions on the form of(rt)t0subscriptsubscript𝑟𝑡𝑡0(r_{t})_{t\geq 0}( italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 0 end_POSTSUBSCRIPT but a detailed analysis of short rate data is beyond the scope of the present paper,and we only provide here short insights into the potential roughness of short rates dynamics.We consider the sport interest rate data from Option Metrics111data available atWRDS/OptionMetrics.We consider the data from 4/1/2010 until 28/2/2023.For different dates within this period, Figures1 show the available data points (circles) as well as the interpolation by splines (the extrapolation is assumed flat).In Figure2,we compute the time series of the yield curves,for each (interpolated) maturities.The estimation of the Hurst exponent for each maturity is shown in Figure3.

Interest rate convexity in a Gaussian framework (1)

Interest rate convexity in a Gaussian framework (2)

Interest rate convexity in a Gaussian framework (3)
Interest rate convexity in a Gaussian framework (4)

A similar analysis on the US Daily Treasury Par Yield Curve Rates222data available athome.treasury.gov/resource-center/data-chart-center/interest-rates yields Figures4 and5.

Interest rate convexity in a Gaussian framework (5)
Interest rate convexity in a Gaussian framework (6)

2. Gaussian martingale driver

2.1. Dynamics of the zero-coupon bond price

We assume first that𝔚𝔚\mathfrak{W}fraktur_W is a continuous Gaussian martingale with γ𝔚(t):=𝔼[𝔚t2]assignsubscript𝛾𝔚𝑡𝔼delimited-[]superscriptsubscript𝔚𝑡2\gamma_{\mathfrak{W}}(t):=\mathbb{E}[\mathfrak{W}_{t}^{2}]italic_γ start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) := blackboard_E [ fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] finite for all t0𝑡0t\geq 0italic_t ≥ 0.In this case, the (predictable) quadratic variation process γ𝔚()subscript𝛾𝔚\gamma_{\mathfrak{W}}(\cdot)italic_γ start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( ⋅ ) is clearly deterministic, but also continuous and increasing, and therefore its derivative γ𝔚superscriptsubscript𝛾𝔚\gamma_{\mathfrak{W}}^{\prime}italic_γ start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT exists almost everywhere.In order to ensure existence of the rate process in(1.1), we assume the following (we write dλd𝜆\mathrm{d}\lambdaroman_d italic_λ for the Lebesgue measure on+subscript\mathbb{R}_{+}blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT):

Assumption 2.1.

For each t[0,T]𝑡0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ], φ(t,)L1(dλ)L2(γ𝔚)𝜑𝑡superscript𝐿1d𝜆superscript𝐿2subscript𝛾𝔚\varphi(t,\cdot)\in L^{1}(\mathrm{d}\lambda)\cap L^{2}(\gamma_{\mathfrak{W}})italic_φ ( italic_t , ⋅ ) ∈ italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( roman_d italic_λ ) ∩ italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_γ start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ), andφ𝜑\varphiitalic_φ is of convolution type(1.5).

Lemma 2.2.

Under Assumption2.1,(ΞT(t,)𝔚)tsubscriptsubscriptnormal-Ξ𝑇𝑡normal-⋅𝔚𝑡\left(\Xi_{T}(t,\cdot)\circ\mathfrak{W}\right)_{t}( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is an (t)t[0,T]subscriptsubscript𝑡𝑡0𝑇(\mathcal{F}_{t})_{t\in[0,T]}( caligraphic_F start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ∈ [ 0 , italic_T ] end_POSTSUBSCRIPT Gaussian semimartingale.

Proof.

From(1.2),ΞTsubscriptΞ𝑇\Xi_{T}roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT is in general not in convolution form(1.5).However, since φ𝜑\varphiitalic_φ is, we can write

ΞT(t,u):=tTφ(s,u)ds=tTφ(su)ds=Φ(Tu)Φ(tu),assignsubscriptΞ𝑇𝑡𝑢superscriptsubscript𝑡𝑇𝜑𝑠𝑢differential-d𝑠superscriptsubscript𝑡𝑇𝜑𝑠𝑢differential-d𝑠Φ𝑇𝑢Φ𝑡𝑢\Xi_{T}(t,u):=-\int_{t}^{T}\varphi(s,u)\mathrm{d}s=-\int_{t}^{T}\varphi(s-u)%\mathrm{d}s=\Phi(T-u)-\Phi(t-u),roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) := - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s = - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s - italic_u ) roman_d italic_s = roman_Φ ( italic_T - italic_u ) - roman_Φ ( italic_t - italic_u ) ,

where the functionΦΦ\Phiroman_Φis defined asΦ(z):=zφ(u)duassignΦ𝑧superscriptsubscript𝑧𝜑𝑢differential-d𝑢\Phi(z):=-\int_{\cdot}^{z}\varphi(u)\mathrm{d}uroman_Φ ( italic_z ) := - ∫ start_POSTSUBSCRIPT ⋅ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_φ ( italic_u ) roman_d italic_u.The stochastic integral then reads

(ΞT(t,)𝔚)t=0tΞT(t,u)d𝔚u=0t[Φ(tu)Φ(Tu)]d𝔚u,subscriptsubscriptΞ𝑇𝑡𝔚𝑡superscriptsubscript0𝑡subscriptΞ𝑇𝑡𝑢differential-dsubscript𝔚𝑢superscriptsubscript0𝑡delimited-[]Φ𝑡𝑢Φ𝑇𝑢differential-dsubscript𝔚𝑢\left(\Xi_{T}(t,\cdot)\circ\mathfrak{W}\right)_{t}=\int_{0}^{t}\Xi_{T}(t,u)%\mathrm{d}\mathfrak{W}_{u}=-\int_{0}^{t}\left[\Phi(t-u)-\Phi(T-u)\right]%\mathrm{d}\mathfrak{W}_{u},( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT = - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT [ roman_Φ ( italic_t - italic_u ) - roman_Φ ( italic_T - italic_u ) ] roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ,

which corresponds to a two-sided moving average process in the sense of[3, Section 5.2].Assumption2.1 then implies that for each t[0,T]𝑡0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ], the functionΞT(t,)subscriptΞ𝑇𝑡\Xi_{T}(t,\cdot)roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) is absolutely continuous on [0,t]0𝑡[0,t][ 0 , italic_t ]and tΞT(t,)L2(γ𝔚)subscript𝑡subscriptΞ𝑇𝑡superscript𝐿2subscript𝛾𝔚\partial_{t}\Xi_{T}(t,\cdot)\in L^{2}(\gamma_{\mathfrak{W}})∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) ∈ italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_γ start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ) and the statement follows from[3, Theorem 5.5].∎

Remark 2.3.
  • The L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT property ensures that the stochastic integral (φ(t)𝔚)t(\varphi(t-\cdot)\circ\mathfrak{W})_{t}( italic_φ ( italic_t - ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is well defined.

  • The assumption does not imply that the short rate itself, while Gaussian, is a semimartingale.

Proposition 2.4.

The price of the zero-coupon bond at timet𝑡titalic_t reads

Pt,T=exp{Θt,T+12tTΞT(u)2du+(ΞT(t,)𝔚)t},subscript𝑃𝑡𝑇subscriptΘ𝑡𝑇12superscriptsubscript𝑡𝑇subscriptΞ𝑇superscript𝑢2differential-d𝑢subscriptsubscriptΞ𝑇𝑡𝔚𝑡P_{t,T}=\exp\left\{-\Theta_{t,T}+\frac{1}{2}\int_{t}^{T}\Xi_{T}(u)^{2}\mathrm{%d}u+\left(\Xi_{T}(t,\cdot)\circ\mathfrak{W}\right)_{t}\right\},italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = roman_exp { - roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u + ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } ,

and the discounted bond priceP~t,T:=Pt,Texp{0trsds}assignsubscriptnormal-~𝑃𝑡𝑇subscript𝑃𝑡𝑇superscriptsubscript0𝑡subscript𝑟𝑠differential-d𝑠\widetilde{P}_{t,T}:=P_{t,T}\exp\left\{-\int_{0}^{t}r_{s}\mathrm{d}s\right\}over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT roman_exp { - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s }is a \mathbb{Q}blackboard_Q-martingale satisfying

dP~t,TP~t,T=ΞT(t)d𝔚t.dsubscript~𝑃𝑡𝑇subscript~𝑃𝑡𝑇subscriptΞ𝑇𝑡dsubscript𝔚𝑡\frac{\mathrm{d}\widetilde{P}_{t,T}}{\widetilde{P}_{t,T}}=\Xi_{T}(t)\ \mathrm{%d}\mathfrak{W}_{t}.divide start_ARG roman_d over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG = roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT .
Corollary 2.5.

The instantaneous forward rate satisfies fTT=rTsubscript𝑓𝑇𝑇subscript𝑟𝑇f_{TT}=r_{T}italic_f start_POSTSUBSCRIPT italic_T italic_T end_POSTSUBSCRIPT = italic_r start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT and, for all t[0,T)𝑡0𝑇t\in[0,T)italic_t ∈ [ 0 , italic_T ),

ft,T=θ(T)+0tφ(T,u)d𝔚u+tTφ(T,u)ΞT(u)du.subscript𝑓𝑡𝑇𝜃𝑇superscriptsubscript0𝑡𝜑𝑇𝑢differential-dsubscript𝔚𝑢superscriptsubscript𝑡𝑇𝜑𝑇𝑢subscriptΞ𝑇𝑢differential-d𝑢f_{t,T}=\theta(T)+\int_{0}^{t}\varphi(T,u)\mathrm{d}\mathfrak{W}_{u}+\int_{t}^%{T}\varphi(T,u)\Xi_{T}(u)\mathrm{d}u.italic_f start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = italic_θ ( italic_T ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_T , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_T , italic_u ) roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) roman_d italic_u .

In differential form, for any fixed T>0𝑇0T>0italic_T > 0, for t[0,T]𝑡0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ], this is equivalent to

dft,T=φ(Tt)d𝔚tφ(Tt)ΞT(t)dt.dsubscript𝑓𝑡𝑇𝜑𝑇𝑡dsubscript𝔚𝑡𝜑𝑇𝑡subscriptΞ𝑇𝑡d𝑡\mathrm{d}f_{t,T}=\varphi(T-t)\mathrm{d}\mathfrak{W}_{t}-\varphi(T-t)\Xi_{T}(t%)\mathrm{d}t.roman_d italic_f start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = italic_φ ( italic_T - italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_φ ( italic_T - italic_t ) roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) roman_d italic_t .
Algorithm 2.6.

For simulation purposes, we consider a time grid 𝒯:={0=t0<t1<<tN=T}assign𝒯0subscript𝑡0subscript𝑡1subscript𝑡𝑁𝑇\mathcal{T}:=\{0=t_{0}<t_{1}<\cdots<t_{N}=T\}caligraphic_T := { 0 = italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < ⋯ < italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = italic_T } and discretise the stochastic integral along this grid with left-point approximations as

(ΞT(ti,)𝔚)ti=0tiΞT(ti,u)d𝔚uk=0i1ΞT(ti,tk)(𝔚tk+1𝔚tk),for eachi=1,,N.formulae-sequencesubscriptsubscriptΞ𝑇subscript𝑡𝑖𝔚subscript𝑡𝑖superscriptsubscript0subscript𝑡𝑖subscriptΞ𝑇subscript𝑡𝑖𝑢differential-dsubscript𝔚𝑢superscriptsubscript𝑘0𝑖1subscriptΞ𝑇subscript𝑡𝑖subscript𝑡𝑘subscript𝔚subscript𝑡𝑘1subscript𝔚subscript𝑡𝑘for each𝑖1𝑁\left(\Xi_{T}(t_{i},\cdot)\circ\mathfrak{W}\right)_{t_{i}}=\int_{0}^{t_{i}}\Xi%_{T}(t_{i},u)\mathrm{d}\mathfrak{W}_{u}\approx\sum_{k=0}^{i-1}\Xi_{T}(t_{i},t_%{k})\left(\mathfrak{W}_{t_{k+1}}-\mathfrak{W}_{t_{k}}\right),\qquad\text{for %each }i=1,\ldots,N.( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ≈ ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i - 1 end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ( fraktur_W start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT - fraktur_W start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) , for each italic_i = 1 , … , italic_N .

The vector(ΞT(ti,)𝔚)ti𝒯subscriptsubscriptΞ𝑇subscript𝑡𝑖𝔚subscript𝑡𝑖𝒯\left(\Xi_{T}(t_{i},\cdot)\circ\mathfrak{W}\right)_{t_{i}\in\mathcal{T}}( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ caligraphic_T end_POSTSUBSCRIPT of stochastic integralscan then be simulated along the grid directly as

((ΞT(t1,)𝔚)t1(ΞT(tN,)𝔚)tN)(ΞT(t1,t0)ΞT(t2,t0)ΞT(t2,t1)ΞT(tN1,t0)ΞT(tN1,t1)ΞT(tN1,tN2)ΞT(tN,t0)ΞT(tN,t1)ΞT(tN,tN1))(𝔚t1𝔚t0𝔚tN𝔚tN1),matrixsubscriptsubscriptΞ𝑇subscript𝑡1𝔚subscript𝑡1subscriptsubscriptΞ𝑇subscript𝑡𝑁𝔚subscript𝑡𝑁matrixsubscriptΞ𝑇subscript𝑡1subscript𝑡0missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionsubscriptΞ𝑇subscript𝑡2subscript𝑡0subscriptΞ𝑇subscript𝑡2subscript𝑡1missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionsubscriptΞ𝑇subscript𝑡𝑁1subscript𝑡0subscriptΞ𝑇subscript𝑡𝑁1subscript𝑡1subscriptΞ𝑇subscript𝑡𝑁1subscript𝑡𝑁2missing-subexpressionsubscriptΞ𝑇subscript𝑡𝑁subscript𝑡0subscriptΞ𝑇subscript𝑡𝑁subscript𝑡1subscriptΞ𝑇subscript𝑡𝑁subscript𝑡𝑁1matrixsubscript𝔚subscript𝑡1subscript𝔚subscript𝑡0subscript𝔚subscript𝑡𝑁subscript𝔚subscript𝑡𝑁1\begin{pmatrix}\left(\Xi_{T}(t_{1},\cdot)\circ\mathfrak{W}\right)_{t_{1}}\\\vdots\\\left(\Xi_{T}(t_{N},\cdot)\circ\mathfrak{W}\right)_{t_{N}}\\\end{pmatrix}\approx\begin{pmatrix}\Xi_{T}(t_{1},t_{0})&&&&\\\Xi_{T}(t_{2},t_{0})&\Xi_{T}(t_{2},t_{1})&&&\\\vdots&\ddots&\ddots&&\\\Xi_{T}(t_{N-1},t_{0})&\Xi_{T}(t_{N-1},t_{1})&\ldots&\Xi_{T}(t_{N-1},t_{N-2})&%\\\Xi_{T}(t_{N},t_{0})&\Xi_{T}(t_{N},t_{1})&\ldots&\Xi_{T}(t_{N},t_{N-1})\end{%pmatrix}\begin{pmatrix}\mathfrak{W}_{t_{1}}-\mathfrak{W}_{t_{0}}\\\vdots\\\mathfrak{W}_{t_{N}}-\mathfrak{W}_{t_{N-1}}\end{pmatrix},( start_ARG start_ROW start_CELL ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ) ≈ ( start_ARG start_ROW start_CELL roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_CELL start_CELL roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋱ end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_N - 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_CELL start_CELL roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_N - 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_CELL start_CELL … end_CELL start_CELL roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_N - 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_N - 2 end_POSTSUBSCRIPT ) end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_CELL start_CELL roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_CELL start_CELL … end_CELL start_CELL roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_N - 1 end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG ) ( start_ARG start_ROW start_CELL fraktur_W start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT - fraktur_W start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL fraktur_W start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT - fraktur_W start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_N - 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ) ,

where the middle matrix is lower triangular (we omit the null terms everywhere for clarity).

Example 2.7.

With φ(t)=σeκt𝜑𝑡𝜎superscripte𝜅𝑡\varphi(t)=\sigma\mathrm{e}^{-\kappa t}italic_φ ( italic_t ) = italic_σ roman_e start_POSTSUPERSCRIPT - italic_κ italic_t end_POSTSUPERSCRIPT, for σ>0𝜎0\sigma>0italic_σ > 0,θ(t):=r0eκt+μ(1eκt)assign𝜃𝑡subscript𝑟0superscripte𝜅𝑡𝜇1superscripte𝜅𝑡\theta(t):=r_{0}\mathrm{e}^{-\kappa t}+\mu\left(1-\mathrm{e}^{-\kappa t}\right)italic_θ ( italic_t ) := italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_e start_POSTSUPERSCRIPT - italic_κ italic_t end_POSTSUPERSCRIPT + italic_μ ( 1 - roman_e start_POSTSUPERSCRIPT - italic_κ italic_t end_POSTSUPERSCRIPT ) and 𝔚=W𝔚𝑊\mathfrak{W}=Wfraktur_W = italic_W a Brownian motion,we recover exactly the Vasicek model[21], namelyrt=r0+κ0t(μrs)ds+σWtsubscript𝑟𝑡subscript𝑟0𝜅superscriptsubscript0𝑡𝜇subscript𝑟𝑠differential-d𝑠𝜎subscript𝑊𝑡r_{t}=r_{0}+\kappa\int_{0}^{t}(\mu-r_{s})\mathrm{d}s+\sigma W_{t}italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_κ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ - italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) roman_d italic_s + italic_σ italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT.

Example 2.8.

Consider the extension of the Vasicek model proposed by Hull and White[13], wheredrt=(ζ(t)a(t)rt)dt+σ(t)dWt,dsubscript𝑟𝑡𝜁𝑡𝑎𝑡subscript𝑟𝑡d𝑡𝜎𝑡dsubscript𝑊𝑡\mathrm{d}r_{t}=(\zeta(t)-a(t)r_{t})\mathrm{d}t+\sigma(t)\mathrm{d}W_{t},roman_d italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_ζ ( italic_t ) - italic_a ( italic_t ) italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) roman_d italic_t + italic_σ ( italic_t ) roman_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ,where ζ(),a()𝜁𝑎\zeta(\cdot),a(\cdot)italic_ζ ( ⋅ ) , italic_a ( ⋅ ) andσ()𝜎\sigma(\cdot)italic_σ ( ⋅ ) are sufficiently smooth deterministic functions of time.Direct computations yield the solution,with A(t):=0ta(s)dsassign𝐴𝑡superscriptsubscript0𝑡𝑎𝑠differential-d𝑠A(t):=\int_{0}^{t}a(s)\mathrm{d}sitalic_A ( italic_t ) := ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_a ( italic_s ) roman_d italic_s,

rt=r0+0te(A(t)A(s))ζ(s)ds+0te(A(t)A(s))σ(s)dWs.subscript𝑟𝑡subscript𝑟0superscriptsubscript0𝑡superscripte𝐴𝑡𝐴𝑠𝜁𝑠differential-d𝑠superscriptsubscript0𝑡superscripte𝐴𝑡𝐴𝑠𝜎𝑠differential-dsubscript𝑊𝑠r_{t}=r_{0}+\int_{0}^{t}\mathrm{e}^{-(A(t)-A(s))}\zeta(s)\mathrm{d}s+\int_{0}^%{t}\mathrm{e}^{-(A(t)-A(s))}\sigma(s)\mathrm{d}W_{s}.italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_e start_POSTSUPERSCRIPT - ( italic_A ( italic_t ) - italic_A ( italic_s ) ) end_POSTSUPERSCRIPT italic_ζ ( italic_s ) roman_d italic_s + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_e start_POSTSUPERSCRIPT - ( italic_A ( italic_t ) - italic_A ( italic_s ) ) end_POSTSUPERSCRIPT italic_σ ( italic_s ) roman_d italic_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT .

Letting

θ(t):=r0+0te(A(t)A(s))ζ(s)ds,φ(t,s):=e(A(t)A(s))andd𝔚t=σ(t)dWtformulae-sequenceassign𝜃𝑡subscript𝑟0superscriptsubscript0𝑡superscripte𝐴𝑡𝐴𝑠𝜁𝑠differential-d𝑠formulae-sequenceassign𝜑𝑡𝑠superscripte𝐴𝑡𝐴𝑠anddsubscript𝔚𝑡𝜎𝑡dsubscript𝑊𝑡\theta(t):=r_{0}+\int_{0}^{t}\mathrm{e}^{-(A(t)-A(s))}\zeta(s)\mathrm{d}s,%\qquad\varphi(t,s):=\mathrm{e}^{-(A(t)-A(s))}\qquad\text{and}\qquad\mathrm{d}%\mathfrak{W}_{t}=\sigma(t)\mathrm{d}W_{t}italic_θ ( italic_t ) := italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_e start_POSTSUPERSCRIPT - ( italic_A ( italic_t ) - italic_A ( italic_s ) ) end_POSTSUPERSCRIPT italic_ζ ( italic_s ) roman_d italic_s , italic_φ ( italic_t , italic_s ) := roman_e start_POSTSUPERSCRIPT - ( italic_A ( italic_t ) - italic_A ( italic_s ) ) end_POSTSUPERSCRIPT and roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_σ ( italic_t ) roman_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT

makes it coincide exactly with our setup in(1.1).Now Assumption2.1 holds if and only if A(t)A(s)=A(ts)𝐴𝑡𝐴𝑠𝐴𝑡𝑠A(t)-A(s)=A(t-s)italic_A ( italic_t ) - italic_A ( italic_s ) = italic_A ( italic_t - italic_s ) for all 0st0𝑠𝑡0\leq s\leq t0 ≤ italic_s ≤ italic_t,namely when the functiona𝑎aitalic_a is linear or constant.Note that, as mentioned in[6, Section3.3], the functiona𝑎aitalic_a is often assumed constant in practice.

Proof of Proposition2.4.

The price of the zero-coupon bond at timet𝑡titalic_t then reads

Pt,T:=𝔼t[exp{tTrsds}]assignsubscript𝑃𝑡𝑇subscriptsuperscript𝔼𝑡delimited-[]superscriptsubscript𝑡𝑇subscript𝑟𝑠differential-d𝑠\displaystyle P_{t,T}:=\mathbb{E}^{\mathbb{Q}}_{t}\left[\exp\left\{-\int_{t}^{%T}r_{s}\mathrm{d}s\right\}\right]italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := blackboard_E start_POSTSUPERSCRIPT blackboard_Q end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT [ roman_exp { - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s } ]=𝔼t[exp{tT(θ(s)+0sφ(s,u)d𝔚u)ds}]absentsubscriptsuperscript𝔼𝑡delimited-[]superscriptsubscript𝑡𝑇𝜃𝑠superscriptsubscript0𝑠𝜑𝑠𝑢differential-dsubscript𝔚𝑢differential-d𝑠\displaystyle=\mathbb{E}^{\mathbb{Q}}_{t}\left[\exp\left\{-\int_{t}^{T}\left(%\theta(s)+\int_{0}^{s}\varphi(s,u)\mathrm{d}\mathfrak{W}_{u}\right)\mathrm{d}s%\right\}\right]= blackboard_E start_POSTSUPERSCRIPT blackboard_Q end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT [ roman_exp { - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( italic_θ ( italic_s ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ) roman_d italic_s } ]
(2.1)=eΘt,T𝔼t[exp{tT(0sφ(s,u)d𝔚u)ds}].absentsuperscriptesubscriptΘ𝑡𝑇subscriptsuperscript𝔼𝑡delimited-[]superscriptsubscript𝑡𝑇superscriptsubscript0𝑠𝜑𝑠𝑢differential-dsubscript𝔚𝑢differential-d𝑠\displaystyle=\mathrm{e}^{-\Theta_{t,T}}\mathbb{E}^{\mathbb{Q}}_{t}\left[\exp%\left\{-\int_{t}^{T}\left(\int_{0}^{s}\varphi(s,u)\mathrm{d}\mathfrak{W}_{u}%\right)\mathrm{d}s\right\}\right].= roman_e start_POSTSUPERSCRIPT - roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_POSTSUPERSCRIPT blackboard_E start_POSTSUPERSCRIPT blackboard_Q end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT [ roman_exp { - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ) roman_d italic_s } ] .

Using Fubini, we can write

(2.2)tT(0sφ(s,u)d𝔚u)dssuperscriptsubscript𝑡𝑇superscriptsubscript0𝑠𝜑𝑠𝑢differential-dsubscript𝔚𝑢differential-d𝑠\displaystyle-\int_{t}^{T}\left(\int_{0}^{s}\varphi(s,u)\mathrm{d}\mathfrak{W}%_{u}\right)\mathrm{d}s- ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ) roman_d italic_s=0t(tTφ(s,u)ds)d𝔚utT(uTφ(s,u)ds)d𝔚uabsentsuperscriptsubscript0𝑡superscriptsubscript𝑡𝑇𝜑𝑠𝑢differential-d𝑠differential-dsubscript𝔚𝑢superscriptsubscript𝑡𝑇superscriptsubscript𝑢𝑇𝜑𝑠𝑢differential-d𝑠differential-dsubscript𝔚𝑢\displaystyle=-\int_{0}^{t}\left(\int_{t}^{T}\varphi(s,u)\mathrm{d}s\right)%\mathrm{d}\mathfrak{W}_{u}-\int_{t}^{T}\left(\int_{u}^{T}\varphi(s,u)\mathrm{d%}s\right)\mathrm{d}\mathfrak{W}_{u}= - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT
=0tΞT(t,u)d𝔚u+tTΞT(u)d𝔚u,absentsuperscriptsubscript0𝑡subscriptΞ𝑇𝑡𝑢differential-dsubscript𝔚𝑢superscriptsubscript𝑡𝑇subscriptΞ𝑇𝑢differential-dsubscript𝔚𝑢\displaystyle=\int_{0}^{t}\Xi_{T}(t,u)\mathrm{d}\mathfrak{W}_{u}+\int_{t}^{T}%\Xi_{T}(u)\mathrm{d}\mathfrak{W}_{u},= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ,

using(1.2).Plugging this into(2.1), the zero-coupon bond then reads

Pt,Tsubscript𝑃𝑡𝑇\displaystyle P_{t,T}italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT=eΘt,Texp{0tΞT(t,u)d𝔚u}𝔼t[exp{tTΞT(u)d𝔚u}]absentsuperscriptesubscriptΘ𝑡𝑇superscriptsubscript0𝑡subscriptΞ𝑇𝑡𝑢differential-dsubscript𝔚𝑢subscriptsuperscript𝔼𝑡delimited-[]superscriptsubscript𝑡𝑇subscriptΞ𝑇𝑢differential-dsubscript𝔚𝑢\displaystyle=\mathrm{e}^{-\Theta_{t,T}}\exp\left\{\int_{0}^{t}\Xi_{T}(t,u)%\mathrm{d}\mathfrak{W}_{u}\right\}\mathbb{E}^{\mathbb{Q}}_{t}\left[\exp\left\{%\int_{t}^{T}\Xi_{T}(u)\mathrm{d}\mathfrak{W}_{u}\right\}\right]= roman_e start_POSTSUPERSCRIPT - roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT } blackboard_E start_POSTSUPERSCRIPT blackboard_Q end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT [ roman_exp { ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT } ]
=eΘt,Texp{(ΞT(t,)𝔚)t}𝔼t[e(ΞT𝔚)t,T].absentsuperscriptesubscriptΘ𝑡𝑇subscriptsubscriptΞ𝑇𝑡𝔚𝑡subscriptsuperscript𝔼𝑡delimited-[]superscriptesubscriptsubscriptΞ𝑇𝔚𝑡𝑇\displaystyle=\mathrm{e}^{-\Theta_{t,T}}\exp\Big{\{}\left(\Xi_{T}(t,\cdot)%\circ\mathfrak{W}\right)_{t}\Big{\}}\mathbb{E}^{\mathbb{Q}}_{t}\left[\mathrm{e%}^{\left(\Xi_{T}\circ\mathfrak{W}\right)_{t,T}}\right].= roman_e start_POSTSUPERSCRIPT - roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_exp { ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } blackboard_E start_POSTSUPERSCRIPT blackboard_Q end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT [ roman_e start_POSTSUPERSCRIPT ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ] .

Conditional ontsubscript𝑡\mathcal{F}_{t}caligraphic_F start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, (ΞT𝔚)t,TsubscriptsubscriptΞ𝑇𝔚𝑡𝑇(\Xi_{T}\circ\mathfrak{W})_{t,T}( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT is centered Gaussian with𝕍t[(ΞT𝔚)t,T]=tTΞT(u)2dusubscript𝕍𝑡delimited-[]subscriptsubscriptΞ𝑇𝔚𝑡𝑇superscriptsubscript𝑡𝑇subscriptΞ𝑇superscript𝑢2differential-d𝑢\mathbb{V}_{t}[(\Xi_{T}\circ\mathfrak{W})_{t,T}]=\int_{t}^{T}\Xi_{T}(u)^{2}%\mathrm{d}ublackboard_V start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT [ ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT ] = ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u,hencePt,T=eΘt,Texp{(ΞT(t,)𝔚)t+12tTΞT(u)2du}.subscript𝑃𝑡𝑇superscriptesubscriptΘ𝑡𝑇subscriptsubscriptΞ𝑇𝑡𝔚𝑡12superscriptsubscript𝑡𝑇subscriptΞ𝑇superscript𝑢2differential-d𝑢P_{t,T}=\mathrm{e}^{-\Theta_{t,T}}\exp\left\{\left(\Xi_{T}(t,\cdot)\circ%\mathfrak{W}\right)_{t}+\frac{1}{2}\int_{t}^{T}\Xi_{T}(u)^{2}\mathrm{d}u\right\}.italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = roman_e start_POSTSUPERSCRIPT - roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_exp { ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u } .By Fubini and Assumption2.1,

(ΞT(t,)𝔚)t=0tΞT(t,u)d𝔚usubscriptsubscriptΞ𝑇𝑡𝔚𝑡superscriptsubscript0𝑡subscriptΞ𝑇𝑡𝑢differential-dsubscript𝔚𝑢\displaystyle\left(\Xi_{T}(t,\cdot)\circ\mathfrak{W}\right)_{t}=\int_{0}^{t}%\Xi_{T}(t,u)\mathrm{d}\mathfrak{W}_{u}( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT=0t(ΞT(u)+utsΞT(s,u)ds)d𝔚uabsentsuperscriptsubscript0𝑡subscriptΞ𝑇𝑢superscriptsubscript𝑢𝑡subscript𝑠subscriptΞ𝑇𝑠𝑢d𝑠differential-dsubscript𝔚𝑢\displaystyle=\int_{0}^{t}\left(\Xi_{T}(u)+\int_{u}^{t}\partial_{s}\Xi_{T}(s,u%)\mathrm{d}s\right)\mathrm{d}\mathfrak{W}_{u}= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) + ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_s , italic_u ) roman_d italic_s ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT
=0tΞT(u)d𝔚u+0tutsΞT(s,u)dsd𝔚uabsentsuperscriptsubscript0𝑡subscriptΞ𝑇𝑢differential-dsubscript𝔚𝑢superscriptsubscript0𝑡superscriptsubscript𝑢𝑡subscript𝑠subscriptΞ𝑇𝑠𝑢d𝑠dsubscript𝔚𝑢\displaystyle=\int_{0}^{t}\Xi_{T}(u)\mathrm{d}\mathfrak{W}_{u}+\int_{0}^{t}%\int_{u}^{t}\partial_{s}\Xi_{T}(s,u)\mathrm{d}s\mathrm{d}\mathfrak{W}_{u}= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_s , italic_u ) roman_d italic_s roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT
=0tΞT(u)d𝔚u+0t0ssΞT(s,u)d𝔚udsabsentsuperscriptsubscript0𝑡subscriptΞ𝑇𝑢differential-dsubscript𝔚𝑢superscriptsubscript0𝑡superscriptsubscript0𝑠subscript𝑠subscriptΞ𝑇𝑠𝑢dsubscript𝔚𝑢d𝑠\displaystyle=\int_{0}^{t}\Xi_{T}(u)\mathrm{d}\mathfrak{W}_{u}+\int_{0}^{t}%\int_{0}^{s}\partial_{s}\Xi_{T}(s,u)\mathrm{d}\mathfrak{W}_{u}\mathrm{d}s= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_s , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_s
=0tΞT(u)d𝔚u+0t0sφ(s,u)d𝔚uds.absentsuperscriptsubscript0𝑡subscriptΞ𝑇𝑢differential-dsubscript𝔚𝑢superscriptsubscript0𝑡superscriptsubscript0𝑠𝜑𝑠𝑢differential-dsubscript𝔚𝑢differential-d𝑠\displaystyle=\int_{0}^{t}\Xi_{T}(u)\mathrm{d}\mathfrak{W}_{u}+\int_{0}^{t}%\int_{0}^{s}\varphi(s,u)\mathrm{d}\mathfrak{W}_{u}\mathrm{d}s.= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_s .

This is an L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-Dirichlet process[20, Definition 2],written as a decomposition of a local martingale and a term with zero quadratic variation.Therefore log(P,T),log(P,T)t=0tΞT(u)2dusubscriptsubscript𝑃𝑇subscript𝑃𝑇𝑡superscriptsubscript0𝑡subscriptΞ𝑇superscript𝑢2differential-d𝑢\langle\log(P_{\cdot,T}),\log(P_{\cdot,T})\rangle_{t}=\int_{0}^{t}\Xi_{T}(u)^{%2}\mathrm{d}u⟨ roman_log ( italic_P start_POSTSUBSCRIPT ⋅ , italic_T end_POSTSUBSCRIPT ) , roman_log ( italic_P start_POSTSUBSCRIPT ⋅ , italic_T end_POSTSUBSCRIPT ) ⟩ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u and

(2.3)dlog(P,T)=(θ(t)+(tΞT(t,)𝔚)t12ΞT(t)2)dt+ΞT(t)d𝔚t.dsubscript𝑃𝑇𝜃𝑡subscriptsubscript𝑡subscriptΞ𝑇𝑡𝔚𝑡12subscriptΞ𝑇superscript𝑡2d𝑡subscriptΞ𝑇𝑡dsubscript𝔚𝑡\mathrm{d}\log(P_{\cdot,T})=\left(\theta(t)+\left(\partial_{t}\Xi_{T}(t,\cdot)%\circ\mathfrak{W}\right)_{t}-\frac{1}{2}\Xi_{T}(t)^{2}\right)\mathrm{d}t+\Xi_{%T}(t)\mathrm{d}\mathfrak{W}_{t}.roman_d roman_log ( italic_P start_POSTSUBSCRIPT ⋅ , italic_T end_POSTSUBSCRIPT ) = ( italic_θ ( italic_t ) + ( ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_d italic_t + roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT .

Now, Itô’s formula with Xt:=log(Pt,T)assignsubscript𝑋𝑡subscript𝑃𝑡𝑇X_{t}:=\log(P_{t,T})italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT := roman_log ( italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT ), using(2.3) yieldsPT,T=Pt,T+tTPs,TdXs+12tTPs,TdX,Xssubscript𝑃𝑇𝑇subscript𝑃𝑡𝑇superscriptsubscript𝑡𝑇subscript𝑃𝑠𝑇differential-dsubscript𝑋𝑠12superscriptsubscript𝑡𝑇subscript𝑃𝑠𝑇dsubscript𝑋𝑋𝑠P_{T,T}=P_{t,T}+\int_{t}^{T}P_{s,T}\mathrm{d}X_{s}+\frac{1}{2}\int_{t}^{T}P_{s%,T}\mathrm{d}\langle X,X\rangle_{s}italic_P start_POSTSUBSCRIPT italic_T , italic_T end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_s , italic_T end_POSTSUBSCRIPT roman_d italic_X start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_s , italic_T end_POSTSUBSCRIPT roman_d ⟨ italic_X , italic_X ⟩ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, hence, for each T>0𝑇0T>0italic_T > 0,dPT,T=dPt,TPt,TdXt12Pt,TdX,Xtdsubscript𝑃𝑇𝑇dsubscript𝑃𝑡𝑇subscript𝑃𝑡𝑇dsubscript𝑋𝑡12subscript𝑃𝑡𝑇dsubscript𝑋𝑋𝑡\mathrm{d}P_{T,T}=\mathrm{d}P_{t,T}-P_{t,T}\mathrm{d}X_{t}-\frac{1}{2}P_{t,T}%\mathrm{d}\langle X,X\rangle_{t}roman_d italic_P start_POSTSUBSCRIPT italic_T , italic_T end_POSTSUBSCRIPT = roman_d italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT - italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT roman_d italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT roman_d ⟨ italic_X , italic_X ⟩ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT,and therefore, since PT,T=1subscript𝑃𝑇𝑇1P_{T,T}=1italic_P start_POSTSUBSCRIPT italic_T , italic_T end_POSTSUBSCRIPT = 1,

dPt,TPt,Tdsubscript𝑃𝑡𝑇subscript𝑃𝑡𝑇\displaystyle\frac{\mathrm{d}P_{t,T}}{P_{t,T}}divide start_ARG roman_d italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG=dXt+12dX,Xt=(θ(t)+(tΞT(t,)𝔚)trt12ΞT(t)2)dt+ΞT(t)d𝔚t+12d(0tΞT(u)2du)absentdsubscript𝑋𝑡12dsubscript𝑋𝑋𝑡subscript𝜃𝑡subscriptsubscript𝑡subscriptΞ𝑇𝑡𝔚𝑡subscript𝑟𝑡12subscriptΞ𝑇superscript𝑡2d𝑡subscriptΞ𝑇𝑡dsubscript𝔚𝑡12dsuperscriptsubscript0𝑡subscriptΞ𝑇superscript𝑢2differential-d𝑢\displaystyle=\mathrm{d}X_{t}+\frac{1}{2}\mathrm{d}\langle X,X\rangle_{t}=%\left(\underbrace{\theta(t)+\left(\partial_{t}\Xi_{T}(t,\cdot)\circ\mathfrak{W%}\right)_{t}}_{r_{t}}-\frac{1}{2}\Xi_{T}(t)^{2}\right)\mathrm{d}t+\Xi_{T}(t)%\mathrm{d}\mathfrak{W}_{t}+\frac{1}{2}\mathrm{d}\left(\int_{0}^{t}\Xi_{T}(u)^{%2}\mathrm{d}u\right)= roman_d italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_d ⟨ italic_X , italic_X ⟩ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( under⏟ start_ARG italic_θ ( italic_t ) + ( ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG start_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_d italic_t + roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_d ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u )
=rtdt+ΞT(t)d𝔚t12ΞT(t)2dt+12ΞT(t)2dt=rtdt+ΞT(t)d𝔚t.absentsubscript𝑟𝑡d𝑡subscriptΞ𝑇𝑡dsubscript𝔚𝑡12subscriptΞ𝑇superscript𝑡2d𝑡12subscriptΞ𝑇superscript𝑡2d𝑡subscript𝑟𝑡d𝑡subscriptΞ𝑇𝑡dsubscript𝔚𝑡\displaystyle=r_{t}\mathrm{d}t+\Xi_{T}(t)\mathrm{d}\mathfrak{W}_{t}-\frac{1}{2%}\Xi_{T}(t)^{2}\mathrm{d}t+\frac{1}{2}\Xi_{T}(t)^{2}\mathrm{d}t=r_{t}\mathrm{d%}t+\Xi_{T}(t)\mathrm{d}\mathfrak{W}_{t}.= italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_d italic_t + roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_t + divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_t = italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_d italic_t + roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT .

The dynamics of the discounted zero-coupon bond price in the lemma follows immediately.∎

Proof of Corollary2.5.

It follows by direct computation starting from the instantaneous forward rate(1.4):

ft,Tsubscript𝑓𝑡𝑇\displaystyle f_{t,T}italic_f start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT=TΘt,TT0tΞT(t,u)d𝔚u12TtTΞT(u)2duabsentsubscript𝑇subscriptΘ𝑡𝑇subscript𝑇superscriptsubscript0𝑡subscriptΞ𝑇𝑡𝑢differential-dsubscript𝔚𝑢12subscript𝑇superscriptsubscript𝑡𝑇subscriptΞ𝑇superscript𝑢2differential-d𝑢\displaystyle=\partial_{T}\Theta_{t,T}-\partial_{T}\int_{0}^{t}\Xi_{T}(t,u)%\mathrm{d}\mathfrak{W}_{u}-\frac{1}{2}\partial_{T}\int_{t}^{T}\Xi_{T}(u)^{2}%\mathrm{d}u= ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT - ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u
=TΘt,TT0t(tTφ(s,u)ds)d𝔚u12TtT(uTφ(s,u)ds)2duabsentsubscript𝑇subscriptΘ𝑡𝑇subscript𝑇superscriptsubscript0𝑡superscriptsubscript𝑡𝑇𝜑𝑠𝑢differential-d𝑠differential-dsubscript𝔚𝑢12subscript𝑇superscriptsubscript𝑡𝑇superscriptsuperscriptsubscript𝑢𝑇𝜑𝑠𝑢differential-d𝑠2differential-d𝑢\displaystyle=\partial_{T}\Theta_{t,T}-\partial_{T}\int_{0}^{t}\left(-\int_{t}%^{T}\varphi(s,u)\mathrm{d}s\right)\mathrm{d}\mathfrak{W}_{u}-\frac{1}{2}%\partial_{T}\int_{t}^{T}\left(-\int_{u}^{T}\varphi(s,u)\mathrm{d}s\right)^{2}%\mathrm{d}u= ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT - ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( - ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u
=θ(T)+0tT(tTφ(s,u)ds)d𝔚u12TtT(uTφ(s,u)ds)2duabsent𝜃𝑇superscriptsubscript0𝑡subscript𝑇superscriptsubscript𝑡𝑇𝜑𝑠𝑢differential-d𝑠dsubscript𝔚𝑢12subscript𝑇superscriptsubscript𝑡𝑇superscriptsuperscriptsubscript𝑢𝑇𝜑𝑠𝑢differential-d𝑠2differential-d𝑢\displaystyle=\theta(T)+\int_{0}^{t}\partial_{T}\left(\int_{t}^{T}\varphi(s,u)%\mathrm{d}s\right)\mathrm{d}\mathfrak{W}_{u}-\frac{1}{2}\partial_{T}\int_{t}^{%T}\left(\int_{u}^{T}\varphi(s,u)\mathrm{d}s\right)^{2}\mathrm{d}u= italic_θ ( italic_T ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u
=θ(T)+0tφ(T,u)d𝔚u12(TTφ(s,T)2ds+tTT[(uTφ(s,u)ds)2]du)absent𝜃𝑇superscriptsubscript0𝑡𝜑𝑇𝑢differential-dsubscript𝔚𝑢12superscriptsubscript𝑇𝑇𝜑superscript𝑠𝑇2differential-d𝑠superscriptsubscript𝑡𝑇subscript𝑇delimited-[]superscriptsuperscriptsubscript𝑢𝑇𝜑𝑠𝑢differential-d𝑠2d𝑢\displaystyle=\theta(T)+\int_{0}^{t}\varphi(T,u)\mathrm{d}\mathfrak{W}_{u}-%\frac{1}{2}\left(\int_{T}^{T}\varphi(s,T)^{2}\mathrm{d}s+\int_{t}^{T}\partial_%{T}\left[\left(\int_{u}^{T}\varphi(s,u)\mathrm{d}s\right)^{2}\right]\mathrm{d}%u\right)= italic_θ ( italic_T ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_T , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∫ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_T ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_s + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT [ ( ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] roman_d italic_u )
=θ(T)+0tφ(T,u)d𝔚utTφ(T,u)(uTφ(s,u)ds)duabsent𝜃𝑇superscriptsubscript0𝑡𝜑𝑇𝑢differential-dsubscript𝔚𝑢superscriptsubscript𝑡𝑇𝜑𝑇𝑢superscriptsubscript𝑢𝑇𝜑𝑠𝑢differential-d𝑠differential-d𝑢\displaystyle=\theta(T)+\int_{0}^{t}\varphi(T,u)\mathrm{d}\mathfrak{W}_{u}-%\int_{t}^{T}\varphi(T,u)\left(\int_{u}^{T}\varphi(s,u)\mathrm{d}s\right)%\mathrm{d}u= italic_θ ( italic_T ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_T , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_T , italic_u ) ( ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) roman_d italic_u
=θ(T)+0tφ(T,u)d𝔚u+tTφ(T,u)ΞT(u)du.absent𝜃𝑇superscriptsubscript0𝑡𝜑𝑇𝑢differential-dsubscript𝔚𝑢superscriptsubscript𝑡𝑇𝜑𝑇𝑢subscriptΞ𝑇𝑢differential-d𝑢\displaystyle=\theta(T)+\int_{0}^{t}\varphi(T,u)\mathrm{d}\mathfrak{W}_{u}+%\int_{t}^{T}\varphi(T,u)\Xi_{T}(u)\mathrm{d}u.= italic_θ ( italic_T ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_T , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_T , italic_u ) roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) roman_d italic_u .

Remark 2.9.

The two lemmas above correspond to the two sides of the Heath-Jarrow-Morton framework.From the expression of the instantaneous forward rate, letαt,T:=φ(Tt)ΞT(t)assignsubscript𝛼𝑡𝑇𝜑𝑇𝑡subscriptΞ𝑇𝑡\alpha_{t,T}:=\varphi(T-t)\Xi_{T}(t)italic_α start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := italic_φ ( italic_T - italic_t ) roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t )and βt,T:=φ(Tt)assignsubscript𝛽𝑡𝑇𝜑𝑇𝑡\beta_{t,T}:=\varphi(T-t)italic_β start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := italic_φ ( italic_T - italic_t ),so thatdft,T=βt,Td𝔚tαt,Tdtdsubscript𝑓𝑡𝑇subscript𝛽𝑡𝑇dsubscript𝔚𝑡subscript𝛼𝑡𝑇d𝑡\mathrm{d}f_{t,T}=\beta_{t,T}\mathrm{d}\mathfrak{W}_{t}-\alpha_{t,T}\mathrm{d}troman_d italic_f start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = italic_β start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_α start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT roman_d italic_t,and consider the discounted bond price

P~t,T:=Pt,Texp{0trsds}=exp{0trsdstTft,sds}=:eZt.\widetilde{P}_{t,T}:=P_{t,T}\exp\left\{-\int_{0}^{t}r_{s}\mathrm{d}s\right\}=%\exp\left\{-\int_{0}^{t}r_{s}\mathrm{d}s-\int_{t}^{T}f_{t,s}\mathrm{d}s\right%\}=:\mathrm{e}^{Z_{t}}.over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT roman_exp { - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s } = roman_exp { - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s } = : roman_e start_POSTSUPERSCRIPT italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT .

Itôs’ formula then yields

(2.4)dP~t,TP~t,T=dZt+12dZ,Zt.dsubscript~𝑃𝑡𝑇subscript~𝑃𝑡𝑇dsubscript𝑍𝑡12dsubscript𝑍𝑍𝑡\frac{\mathrm{d}\widetilde{P}_{t,T}}{\widetilde{P}_{t,T}}=\mathrm{d}Z_{t}+%\frac{1}{2}\mathrm{d}\langle Z,Z\rangle_{t}.divide start_ARG roman_d over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG = roman_d italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_d ⟨ italic_Z , italic_Z ⟩ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT .

From the differential form of ft,Tsubscript𝑓𝑡𝑇f_{t,T}italic_f start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT, we can write, for any t[0,T)𝑡0𝑇t\in[0,T)italic_t ∈ [ 0 , italic_T ),

ft,T=f0,T+0tdfs,T=f0,T+0t(φ(T,u)d𝔚uφ(T,u)ΞT(u)du)=f0,T+0tβu,Td𝔚u+0tαu,Tdu,subscript𝑓𝑡𝑇subscript𝑓0𝑇superscriptsubscript0𝑡differential-dsubscript𝑓𝑠𝑇subscript𝑓0𝑇superscriptsubscript0𝑡𝜑𝑇𝑢dsubscript𝔚𝑢𝜑𝑇𝑢subscriptΞ𝑇𝑢d𝑢subscript𝑓0𝑇superscriptsubscript0𝑡subscript𝛽𝑢𝑇differential-dsubscript𝔚𝑢superscriptsubscript0𝑡subscript𝛼𝑢𝑇differential-d𝑢f_{t,T}=f_{0,T}+\int_{0}^{t}\mathrm{d}f_{s,T}=f_{0,T}+\int_{0}^{t}\Big{(}%\varphi(T,u)\mathrm{d}\mathfrak{W}_{u}-\varphi(T,u)\Xi_{T}(u)\mathrm{d}u\Big{)%}=f_{0,T}+\int_{0}^{t}\beta_{u,T}\mathrm{d}\mathfrak{W}_{u}+\int_{0}^{t}\alpha%_{u,T}\mathrm{d}u,italic_f start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT 0 , italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_d italic_f start_POSTSUBSCRIPT italic_s , italic_T end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT 0 , italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_φ ( italic_T , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT - italic_φ ( italic_T , italic_u ) roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) roman_d italic_u ) = italic_f start_POSTSUBSCRIPT 0 , italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_u , italic_T end_POSTSUBSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_u , italic_T end_POSTSUBSCRIPT roman_d italic_u ,

so that, using stochastic Fubini, we obtain

Ft,Tsubscript𝐹𝑡𝑇\displaystyle F_{t,T}italic_F start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT:=tTft,sds=tT(f0,s+0tβu,sd𝔚u+0tαu,sdu)dsassignabsentsuperscriptsubscript𝑡𝑇subscript𝑓𝑡𝑠differential-d𝑠superscriptsubscript𝑡𝑇subscript𝑓0𝑠superscriptsubscript0𝑡subscript𝛽𝑢𝑠differential-dsubscript𝔚𝑢superscriptsubscript0𝑡subscript𝛼𝑢𝑠differential-d𝑢differential-d𝑠\displaystyle:=\int_{t}^{T}f_{t,s}\mathrm{d}s=\int_{t}^{T}\left(f_{0,s}+\int_{%0}^{t}\beta_{u,s}\mathrm{d}\mathfrak{W}_{u}+\int_{0}^{t}\alpha_{u,s}\mathrm{d}%u\right)\mathrm{d}s:= ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s = ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( italic_f start_POSTSUBSCRIPT 0 , italic_s end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_u ) roman_d italic_s
=tTf0,sds+0ttTβu,sdsd𝔚u+0ttTαu,sdsdu.absentsuperscriptsubscript𝑡𝑇subscript𝑓0𝑠differential-d𝑠superscriptsubscript0𝑡superscriptsubscript𝑡𝑇subscript𝛽𝑢𝑠differential-d𝑠differential-dsubscript𝔚𝑢superscriptsubscript0𝑡superscriptsubscript𝑡𝑇subscript𝛼𝑢𝑠differential-d𝑠differential-d𝑢\displaystyle=\int_{t}^{T}f_{0,s}\mathrm{d}s+\int_{0}^{t}\int_{t}^{T}\beta_{u,%s}\mathrm{d}s\mathrm{d}\mathfrak{W}_{u}+\int_{0}^{t}\int_{t}^{T}\alpha_{u,s}%\mathrm{d}s\mathrm{d}u.= ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT 0 , italic_s end_POSTSUBSCRIPT roman_d italic_s + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d italic_u .

Now,

tTf0,sdssuperscriptsubscript𝑡𝑇subscript𝑓0𝑠differential-d𝑠\displaystyle\int_{t}^{T}f_{0,s}\mathrm{d}s∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT 0 , italic_s end_POSTSUBSCRIPT roman_d italic_s=tT(fs,s0sufu,sdu)dsabsentsuperscriptsubscript𝑡𝑇subscript𝑓𝑠𝑠superscriptsubscript0𝑠subscript𝑢subscript𝑓𝑢𝑠d𝑢differential-d𝑠\displaystyle=\int_{t}^{T}\left(f_{s,s}-\int_{0}^{s}\partial_{u}f_{u,s}\mathrm%{d}u\right)\mathrm{d}s= ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( italic_f start_POSTSUBSCRIPT italic_s , italic_s end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_u ) roman_d italic_s
=tTrsds0ttTufu,sdsdutTuTufu,sdsduabsentsuperscriptsubscript𝑡𝑇subscript𝑟𝑠differential-d𝑠superscriptsubscript0𝑡superscriptsubscript𝑡𝑇subscript𝑢subscript𝑓𝑢𝑠d𝑠d𝑢superscriptsubscript𝑡𝑇superscriptsubscript𝑢𝑇subscript𝑢subscript𝑓𝑢𝑠d𝑠d𝑢\displaystyle=\int_{t}^{T}r_{s}\mathrm{d}s-\int_{0}^{t}\int_{t}^{T}\partial_{u%}f_{u,s}\mathrm{d}s\mathrm{d}u-\int_{t}^{T}\int_{u}^{T}\partial_{u}f_{u,s}%\mathrm{d}s\mathrm{d}u= ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d italic_u - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d italic_u
=tTrsds0t(tTufu,sdsuTufu,sds)du0TuTufu,sdsduabsentsuperscriptsubscript𝑡𝑇subscript𝑟𝑠differential-d𝑠superscriptsubscript0𝑡superscriptsubscript𝑡𝑇subscript𝑢subscript𝑓𝑢𝑠d𝑠superscriptsubscript𝑢𝑇subscript𝑢subscript𝑓𝑢𝑠d𝑠differential-d𝑢superscriptsubscript0𝑇superscriptsubscript𝑢𝑇subscript𝑢subscript𝑓𝑢𝑠d𝑠d𝑢\displaystyle=\int_{t}^{T}r_{s}\mathrm{d}s-\int_{0}^{t}\left(\int_{t}^{T}%\partial_{u}f_{u,s}\mathrm{d}s-\int_{u}^{T}\partial_{u}f_{u,s}\mathrm{d}s%\right)\mathrm{d}u-\int_{0}^{T}\int_{u}^{T}\partial_{u}f_{u,s}\mathrm{d}s%\mathrm{d}u= ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s - ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s ) roman_d italic_u - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d italic_u
=tTrsds+0tutufu,sdsdu0TuTufu,sdsdu,absentsuperscriptsubscript𝑡𝑇subscript𝑟𝑠differential-d𝑠superscriptsubscript0𝑡superscriptsubscript𝑢𝑡subscript𝑢subscript𝑓𝑢𝑠d𝑠d𝑢superscriptsubscript0𝑇superscriptsubscript𝑢𝑇subscript𝑢subscript𝑓𝑢𝑠d𝑠d𝑢\displaystyle=\int_{t}^{T}r_{s}\mathrm{d}s+\int_{0}^{t}\int_{u}^{t}\partial_{u%}f_{u,s}\mathrm{d}s\mathrm{d}u-\int_{0}^{T}\int_{u}^{T}\partial_{u}f_{u,s}%\mathrm{d}s\mathrm{d}u,= ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d italic_u - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d italic_u ,

using Fubini, so that

Ft,T=tTrsds+0tutufu,sdsdu0TuTufu,sdsdutTf0,sds+0ttTβu,sdsd𝔚u+0ttTαu,sdsdu,subscript𝐹𝑡𝑇subscriptsuperscriptsubscript𝑡𝑇subscript𝑟𝑠differential-d𝑠superscriptsubscript0𝑡superscriptsubscript𝑢𝑡subscript𝑢subscript𝑓𝑢𝑠d𝑠d𝑢superscriptsubscript0𝑇superscriptsubscript𝑢𝑇subscript𝑢subscript𝑓𝑢𝑠d𝑠d𝑢superscriptsubscript𝑡𝑇subscript𝑓0𝑠differential-d𝑠superscriptsubscript0𝑡superscriptsubscript𝑡𝑇subscript𝛽𝑢𝑠differential-d𝑠differential-dsubscript𝔚𝑢superscriptsubscript0𝑡superscriptsubscript𝑡𝑇subscript𝛼𝑢𝑠differential-d𝑠differential-d𝑢F_{t,T}=\underbrace{\int_{t}^{T}r_{s}\mathrm{d}s+\int_{0}^{t}\int_{u}^{t}%\partial_{u}f_{u,s}\mathrm{d}s\mathrm{d}u-\int_{0}^{T}\int_{u}^{T}\partial_{u}%f_{u,s}\mathrm{d}s\mathrm{d}u}_{\int_{t}^{T}f_{0,s}\mathrm{d}s}+\int_{0}^{t}%\int_{t}^{T}\beta_{u,s}\mathrm{d}s\mathrm{d}\mathfrak{W}_{u}+\int_{0}^{t}\int_%{t}^{T}\alpha_{u,s}\mathrm{d}s\mathrm{d}u,italic_F start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = under⏟ start_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d italic_u - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d italic_u end_ARG start_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT 0 , italic_s end_POSTSUBSCRIPT roman_d italic_s end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_u , italic_s end_POSTSUBSCRIPT roman_d italic_s roman_d italic_u ,

anddFt,T=(tTαt,sdsrt)dt+(tTβt,sds)d𝔚tdsubscript𝐹𝑡𝑇superscriptsubscript𝑡𝑇subscript𝛼𝑡𝑠differential-d𝑠subscript𝑟𝑡d𝑡superscriptsubscript𝑡𝑇subscript𝛽𝑡𝑠differential-d𝑠dsubscript𝔚𝑡\mathrm{d}F_{t,T}=\left(\int_{t}^{T}\alpha_{t,s}\mathrm{d}s-r_{t}\right)%\mathrm{d}t+\left(\int_{t}^{T}\beta_{t,s}\mathrm{d}s\right)\mathrm{d}\mathfrak%{W}_{t}roman_d italic_F start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s - italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) roman_d italic_t + ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT.Therefore,

dZt=d(0trsdstTft,sds)=rtdtdFt,T=rtdtdFt,T=(tTαt,sds)dt(tTβt,sds)d𝔚t,dsubscript𝑍𝑡dsuperscriptsubscript0𝑡subscript𝑟𝑠differential-d𝑠superscriptsubscript𝑡𝑇subscript𝑓𝑡𝑠differential-d𝑠subscript𝑟𝑡d𝑡dsubscript𝐹𝑡𝑇subscript𝑟𝑡d𝑡dsubscript𝐹𝑡𝑇superscriptsubscript𝑡𝑇subscript𝛼𝑡𝑠differential-d𝑠d𝑡superscriptsubscript𝑡𝑇subscript𝛽𝑡𝑠differential-d𝑠dsubscript𝔚𝑡\mathrm{d}Z_{t}=\mathrm{d}\left(-\int_{0}^{t}r_{s}\mathrm{d}s-\int_{t}^{T}f_{t%,s}\mathrm{d}s\right)=-r_{t}\mathrm{d}t-\mathrm{d}F_{t,T}=-r_{t}\mathrm{d}t-%\mathrm{d}F_{t,T}=-\left(\int_{t}^{T}\alpha_{t,s}\mathrm{d}s\right)\mathrm{d}t%-\left(\int_{t}^{T}\beta_{t,s}\mathrm{d}s\right)\mathrm{d}\mathfrak{W}_{t},roman_d italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = roman_d ( - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s ) = - italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_d italic_t - roman_d italic_F start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = - italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_d italic_t - roman_d italic_F start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = - ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s ) roman_d italic_t - ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ,

and(2.4) gives

dP~t,TP~t,T=(tTαt,sds12(tTβt,sds)2)dt(tTβt,sds)d𝔚t.dsubscript~𝑃𝑡𝑇subscript~𝑃𝑡𝑇superscriptsubscript𝑡𝑇subscript𝛼𝑡𝑠differential-d𝑠12superscriptsuperscriptsubscript𝑡𝑇subscript𝛽𝑡𝑠differential-d𝑠2d𝑡superscriptsubscript𝑡𝑇subscript𝛽𝑡𝑠differential-d𝑠dsubscript𝔚𝑡\frac{\mathrm{d}\widetilde{P}_{t,T}}{\widetilde{P}_{t,T}}=-\left(\int_{t}^{T}%\alpha_{t,s}\mathrm{d}s-\frac{1}{2}\left(\int_{t}^{T}\beta_{t,s}\mathrm{d}s%\right)^{2}\right)\mathrm{d}t-\left(\int_{t}^{T}\beta_{t,s}\mathrm{d}s\right)%\mathrm{d}\mathfrak{W}_{t}.divide start_ARG roman_d over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG = - ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_d italic_t - ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT .

The discounted process (P~t,T)t[0,T]subscriptsubscript~𝑃𝑡𝑇𝑡0𝑇(\widetilde{P}_{t,T})_{t\in[0,T]}( over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ∈ [ 0 , italic_T ] end_POSTSUBSCRIPT is a local martingale if and only if its drift is null:for t(0,T)𝑡0𝑇t\in(0,T)italic_t ∈ ( 0 , italic_T ),

T{tTαt,sds12[tTβt,sds]2}=αt,Tβt,TtTβt,sds=φ(Tt)[ΞT(t)tTφ(s,t)ds],subscript𝑇superscriptsubscript𝑡𝑇subscript𝛼𝑡𝑠differential-d𝑠12superscriptdelimited-[]superscriptsubscript𝑡𝑇subscript𝛽𝑡𝑠differential-d𝑠2subscript𝛼𝑡𝑇subscript𝛽𝑡𝑇superscriptsubscript𝑡𝑇subscript𝛽𝑡𝑠differential-d𝑠𝜑𝑇𝑡delimited-[]subscriptΞ𝑇𝑡superscriptsubscript𝑡𝑇𝜑𝑠𝑡differential-d𝑠\partial_{T}\left\{\int_{t}^{T}\alpha_{t,s}\mathrm{d}s-\frac{1}{2}\left[\int_{%t}^{T}\beta_{t,s}\mathrm{d}s\right]^{2}\right\}=\alpha_{t,T}-\beta_{t,T}\int_{%t}^{T}\beta_{t,s}\mathrm{d}s=\varphi(T-t)\left[\Xi_{T}(t)-\int_{t}^{T}\varphi(%s,t)\mathrm{d}s\right],∂ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT { ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s - divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } = italic_α start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT - italic_β start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_t , italic_s end_POSTSUBSCRIPT roman_d italic_s = italic_φ ( italic_T - italic_t ) [ roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_t ) roman_d italic_s ] ,

which is equal to zero by definition of the functions.Therefore the drift (as a function ofT𝑇Titalic_T) is constant.Since it is trivially equal to zero at T=t𝑇𝑡T=titalic_T = italic_t, it is null everywhereand (P~t,T)t[0,T]subscriptsubscript~𝑃𝑡𝑇𝑡0𝑇(\widetilde{P}_{t,T})_{t\in[0,T]}( over~ start_ARG italic_P end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ∈ [ 0 , italic_T ] end_POSTSUBSCRIPT isa \mathbb{Q}blackboard_Q-local martingale.

2.2. Convexity adjustments

We now enter the core of the paper, investigating the influence of the Gaussian driver on the convexity of bond prices.We first start with the following simple proposition:

Proposition 2.10.

For any T,τ0𝑇𝜏0T,\tau\geq 0italic_T , italic_τ ≥ 0,

d(1Pt,τ)d1subscript𝑃𝑡𝜏\displaystyle\mathrm{d}\left(\frac{1}{P_{t,\tau}}\right)roman_d ( divide start_ARG 1 end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG )=(Ξτ(t,t)2γ𝔚(t)rt)dtPt,τΞτ(t,t)Pt,τd𝔚t,absentsubscriptΞ𝜏superscript𝑡𝑡2subscriptsuperscript𝛾𝔚𝑡subscript𝑟𝑡d𝑡subscript𝑃𝑡𝜏subscriptΞ𝜏𝑡𝑡subscript𝑃𝑡𝜏dsubscript𝔚𝑡\displaystyle=\frac{\left(\Xi_{\tau}(t,t)^{2}\gamma^{\prime}_{\mathfrak{W}}(t)%-r_{t}\right)\mathrm{d}t}{P_{t,\tau}}-\frac{\Xi_{\tau}(t,t)}{P_{t,\tau}}%\mathrm{d}\mathfrak{W}_{t},= divide start_ARG ( roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) - italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) roman_d italic_t end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG - divide start_ARG roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ,
d(Pt,TPt,τ)dsubscript𝑃𝑡𝑇subscript𝑃𝑡𝜏\displaystyle\mathrm{d}\left(\frac{P_{t,T}}{P_{t,\tau}}\right)roman_d ( divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG )=Pt,TPt,τ(ΞT(t,t)Ξτ(t,t)){Ξτ(t,t)γ𝔚(t)dt+d𝔚t},absentsubscript𝑃𝑡𝑇subscript𝑃𝑡𝜏subscriptΞ𝑇𝑡𝑡subscriptΞ𝜏𝑡𝑡subscriptΞ𝜏𝑡𝑡subscriptsuperscript𝛾𝔚𝑡d𝑡dsubscript𝔚𝑡\displaystyle=\frac{P_{t,T}}{P_{t,\tau}}\Big{(}\Xi_{T}(t,t)-\Xi_{\tau}(t,t)%\Big{)}\Big{\{}-\Xi_{\tau}(t,t)\gamma^{\prime}_{\mathfrak{W}}(t)\mathrm{d}t+%\mathrm{d}\mathfrak{W}_{t}\Big{\}},= divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_t ) - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) ) { - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) roman_d italic_t + roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } ,

and there exists a probability measureτsuperscript𝜏\mathbb{Q}^{\tau}blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT such that𝔚tτsubscriptsuperscript𝔚superscript𝜏𝑡\mathfrak{W}^{\mathbb{Q}^{\tau}}_{t}fraktur_W start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is a τsuperscript𝜏\mathbb{Q}^{\tau}blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT-Gaussian martingale and

(2.5)d(Pt,TPt,τ)=Pt,TPt,τΣtT,τd𝔚tτ,dsubscript𝑃𝑡𝑇subscript𝑃𝑡𝜏subscript𝑃𝑡𝑇subscript𝑃𝑡𝜏superscriptsubscriptΣ𝑡𝑇𝜏dsubscriptsuperscript𝔚superscript𝜏𝑡\mathrm{d}\left(\frac{P_{t,T}}{P_{t,\tau}}\right)=\frac{P_{t,T}}{P_{t,\tau}}%\Sigma_{t}^{T,\tau}\mathrm{d}\mathfrak{W}^{\mathbb{Q}^{\tau}}_{t},roman_d ( divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG ) = divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT roman_d fraktur_W start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ,

under τsuperscript𝜏\mathbb{Q}^{\tau}blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT,where ΣtT,τ:=ΞT(t)Ξτ(t)=Φ(Tt)Φ(τt)assignsuperscriptsubscriptnormal-Σ𝑡𝑇𝜏subscriptnormal-Ξ𝑇𝑡subscriptnormal-Ξ𝜏𝑡normal-Φ𝑇𝑡normal-Φ𝜏𝑡\Sigma_{t}^{T,\tau}:=\Xi_{T}(t)-\Xi_{\tau}(t)=\Phi(T-t)-\Phi(\tau-t)roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT := roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t ) - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t ) = roman_Φ ( italic_T - italic_t ) - roman_Φ ( italic_τ - italic_t ).

Note that, from the definition of ΞTsubscriptΞ𝑇\Xi_{T}roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPTin(1.2),ΣtT,τsuperscriptsubscriptΣ𝑡𝑇𝜏\Sigma_{t}^{T,\tau}roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT is non-negative whenever τT𝜏𝑇\tau\geq Titalic_τ ≥ italic_T.In standard Fixed Income literature, the probability measureτsuperscript𝜏\mathbb{Q}^{\tau}blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT corresponds to the τ𝜏\tauitalic_τ-forward measure.

Proof.

From the definition of the zero-coupon price(1.3) and Proposition2.4,Pt,Tsubscript𝑃𝑡𝑇P_{t,T}italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT is strictly positive almost surely and

dPt,TPt,T=rtdt+ΞT(t,t)d𝔚t,dsubscript𝑃𝑡𝑇subscript𝑃𝑡𝑇subscript𝑟𝑡d𝑡subscriptΞ𝑇𝑡𝑡dsubscript𝔚𝑡\frac{\mathrm{d}P_{t,T}}{P_{t,T}}=r_{t}\mathrm{d}t+\Xi_{T}(t,t)\mathrm{d}%\mathfrak{W}_{t},divide start_ARG roman_d italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG = italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_d italic_t + roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ,

and therefore Itô’s formula implies that, for any 0tτ0𝑡𝜏0\leq t\leq\tau0 ≤ italic_t ≤ italic_τ,

d(1Pt,τ)=dPt,τPt,τ2+dPt,τ,Pt,τPt,τ3=(Ξτ(t,t)2γ𝔚(t)rt)dtPt,τΞτ(t,t)d𝔚tPt,τ.d1subscript𝑃𝑡𝜏dsubscript𝑃𝑡𝜏superscriptsubscript𝑃𝑡𝜏2dsubscript𝑃𝑡𝜏subscript𝑃𝑡𝜏superscriptsubscript𝑃𝑡𝜏3subscriptΞ𝜏superscript𝑡𝑡2subscriptsuperscript𝛾𝔚𝑡subscript𝑟𝑡d𝑡subscript𝑃𝑡𝜏subscriptΞ𝜏𝑡𝑡dsubscript𝔚𝑡subscript𝑃𝑡𝜏\mathrm{d}\left(\frac{1}{P_{t,\tau}}\right)=-\frac{\mathrm{d}P_{t,\tau}}{P_{t,%\tau}^{2}}+\frac{\mathrm{d}\langle P_{t,\tau},P_{t,\tau}\rangle}{P_{t,\tau}^{3%}}=\frac{\Big{(}\Xi_{\tau}(t,t)^{2}\gamma^{\prime}_{\mathfrak{W}}(t)-r_{t}\Big%{)}\mathrm{d}t}{P_{t,\tau}}-\frac{\Xi_{\tau}(t,t)\mathrm{d}\mathfrak{W}_{t}}{P%_{t,\tau}}.roman_d ( divide start_ARG 1 end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG ) = - divide start_ARG roman_d italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG roman_d ⟨ italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT , italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT ⟩ end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG = divide start_ARG ( roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) - italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) roman_d italic_t end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG - divide start_ARG roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG .

Therefore

d(Pt,TPt,τ)dsubscript𝑃𝑡𝑇subscript𝑃𝑡𝜏\displaystyle\mathrm{d}\left(\frac{P_{t,T}}{P_{t,\tau}}\right)roman_d ( divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG )=Pt,Td(1Pt,τ)+dPt,TPt,τ+dPt,Td(1Pt,τ)absentsubscript𝑃𝑡𝑇d1subscript𝑃𝑡𝜏dsubscript𝑃𝑡𝑇subscript𝑃𝑡𝜏dsubscript𝑃𝑡𝑇d1subscript𝑃𝑡𝜏\displaystyle=P_{t,T}\mathrm{d}\left(\frac{1}{P_{t,\tau}}\right)+\frac{\mathrm%{d}P_{t,T}}{P_{t,\tau}}+\mathrm{d}P_{t,T}\cdot\mathrm{d}\left(\frac{1}{P_{t,%\tau}}\right)= italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT roman_d ( divide start_ARG 1 end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG ) + divide start_ARG roman_d italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG + roman_d italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT ⋅ roman_d ( divide start_ARG 1 end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG )
=Pt,TPt,τ{(Ξτ(t,t)2γ𝔚(t)rt)dtΞτ(t,t)d𝔚t+(rtdt+ΞT(t,t)d𝔚t)ΞT(t,t)Ξτ(t,t)γ𝔚(t)dt}absentsubscript𝑃𝑡𝑇subscript𝑃𝑡𝜏subscriptΞ𝜏superscript𝑡𝑡2subscriptsuperscript𝛾𝔚𝑡subscript𝑟𝑡d𝑡subscriptΞ𝜏𝑡𝑡dsubscript𝔚𝑡subscript𝑟𝑡d𝑡subscriptΞ𝑇𝑡𝑡dsubscript𝔚𝑡subscriptΞ𝑇𝑡𝑡subscriptΞ𝜏𝑡𝑡superscriptsubscript𝛾𝔚𝑡d𝑡\displaystyle=\frac{P_{t,T}}{P_{t,\tau}}\left\{\Big{(}\Xi_{\tau}(t,t)^{2}%\gamma^{\prime}_{\mathfrak{W}}(t)-r_{t}\Big{)}\mathrm{d}t-\Xi_{\tau}(t,t)%\mathrm{d}\mathfrak{W}_{t}+\Big{(}r_{t}\mathrm{d}t+\Xi_{T}(t,t)\mathrm{d}%\mathfrak{W}_{t}\Big{)}-\Xi_{T}(t,t)\Xi_{\tau}(t,t)\gamma_{\mathfrak{W}}^{%\prime}(t)\mathrm{d}t\right\}= divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG { ( roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) - italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) roman_d italic_t - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + ( italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_d italic_t + roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_t ) roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) - roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_t ) roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) italic_γ start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) roman_d italic_t }
=Pt,TPt,τ(ΞT(t,t)Ξτ(t,t)){Ξτ(t,t)γ𝔚(t)dt+d𝔚t}.absentsubscript𝑃𝑡𝑇subscript𝑃𝑡𝜏subscriptΞ𝑇𝑡𝑡subscriptΞ𝜏𝑡𝑡subscriptΞ𝜏𝑡𝑡subscriptsuperscript𝛾𝔚𝑡d𝑡dsubscript𝔚𝑡\displaystyle=\frac{P_{t,T}}{P_{t,\tau}}\Big{(}\Xi_{T}(t,t)-\Xi_{\tau}(t,t)%\Big{)}\Big{\{}-\Xi_{\tau}(t,t)\gamma^{\prime}_{\mathfrak{W}}(t)\mathrm{d}t+%\mathrm{d}\mathfrak{W}_{t}\Big{\}}.= divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG ( roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_t ) - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) ) { - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) roman_d italic_t + roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } .

Define now the Doléans-Dade exponential

Mt:=exp{0tΞτ(s,s)γ𝔚(s)d𝔚s120t[Ξτ(s,s)γ𝔚(s)]2ds},assignsubscript𝑀𝑡superscriptsubscript0𝑡subscriptΞ𝜏𝑠𝑠subscriptsuperscript𝛾𝔚𝑠differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡superscriptdelimited-[]subscriptΞ𝜏𝑠𝑠subscriptsuperscript𝛾𝔚𝑠2differential-d𝑠M_{t}:=\exp\left\{\int_{0}^{t}\Xi_{\tau}(s,s)\gamma^{\prime}_{\mathfrak{W}}(s)%\mathrm{d}\mathfrak{W}_{s}-\frac{1}{2}\int_{0}^{t}\left[\Xi_{\tau}(s,s)\gamma^%{\prime}_{\mathfrak{W}}(s)\right]^{2}\mathrm{d}s\right\},italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT := roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_s , italic_s ) italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT [ roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_s , italic_s ) italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_s } ,

and the Radon-Nikodym derivativedτd:=Massigndsuperscript𝜏d𝑀\frac{\mathrm{d}\mathbb{Q}^{\tau}}{\mathrm{d}\mathbb{P}}:=Mdivide start_ARG roman_d blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT end_ARG start_ARG roman_d blackboard_P end_ARG := italic_M.Girsanov’s Theorem[17, Theorem 8.6.4] implies that𝔚tτ:=𝔚t0tΞτ(s,s)γ𝔚(s)dsassignsubscriptsuperscript𝔚superscript𝜏𝑡subscript𝔚𝑡superscriptsubscript0𝑡subscriptΞ𝜏𝑠𝑠subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\mathfrak{W}^{\mathbb{Q}^{\tau}}_{t}:=\mathfrak{W}_{t}-\int_{0}^{t}\Xi_{\tau}(%s,s)\gamma^{\prime}_{\mathfrak{W}}(s)\mathrm{d}sfraktur_W start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT := fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_s , italic_s ) italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_sis a Gaussian martingale andPt,TPt,τsubscript𝑃𝑡𝑇subscript𝑃𝑡𝜏\frac{P_{t,T}}{P_{t,\tau}}divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG satisfies(2.5) underτsuperscript𝜏\mathbb{Q}^{\tau}blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT.∎

The following proposition is key and provides a closed-form expression for the convexity adjustments:

Proposition 2.11.

For any τ0𝜏0\tau\geq 0italic_τ ≥ 0 let 𝔱1,𝔱20subscript𝔱1subscript𝔱20\mathfrak{t}_{1},\mathfrak{t}_{2}\geq 0fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≥ 0.We then have

𝔼τ[Pt,𝔱1Pt,𝔱2]=P0,𝔱1P0,𝔱2tτ(𝔱1,𝔱2),for anyt[0,𝔱1𝔱2],formulae-sequencesuperscript𝔼superscript𝜏delimited-[]subscript𝑃𝑡subscript𝔱1subscript𝑃𝑡subscript𝔱2subscript𝑃0subscript𝔱1subscript𝑃0subscript𝔱2superscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱2for any𝑡0subscript𝔱1subscript𝔱2\mathbb{E}^{\mathbb{Q}^{\tau}}\left[\frac{P_{t,\mathfrak{t}_{1}}}{P_{t,%\mathfrak{t}_{2}}}\right]=\frac{P_{0,\mathfrak{t}_{1}}}{P_{0,\mathfrak{t}_{2}}%}\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{2}),\qquad\text{for %any }t\in[0,\mathfrak{t}_{1}\wedge\mathfrak{t}_{2}],blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ] = divide start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , for any italic_t ∈ [ 0 , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∧ fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] ,

wheretτ(𝔱1,𝔱2):=exp{0t(Σs𝔱2,τΣs𝔱1,τ)Σs𝔱2,τγ𝔚(s)ds}assignsuperscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱2superscriptsubscript0𝑡superscriptsubscriptnormal-Σ𝑠subscript𝔱2𝜏superscriptsubscriptnormal-Σ𝑠subscript𝔱1𝜏superscriptsubscriptnormal-Σ𝑠subscript𝔱2𝜏subscriptsuperscript𝛾normal-′𝔚𝑠differential-d𝑠\displaystyle\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{2}):=\exp%\left\{\int_{0}^{t}\left(\Sigma_{s}^{\mathfrak{t}_{2},\tau}-\Sigma_{s}^{%\mathfrak{t}_{1},\tau}\right)\Sigma_{s}^{\mathfrak{t}_{2},\tau}\gamma^{\prime}%_{\mathfrak{W}}(s)\mathrm{d}s\right\}fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) := roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s }is the convexity adjustment factor.

Remark 2.12.
  • When t=0𝑡0t=0italic_t = 0 or 𝔱1=𝔱2subscript𝔱1subscript𝔱2\mathfrak{t}_{1}=\mathfrak{t}_{2}fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT or Pt,𝔱1Pt,𝔱2subscript𝑃𝑡subscript𝔱1subscript𝑃𝑡subscript𝔱2\displaystyle\frac{P_{t,\mathfrak{t}_{1}}}{P_{t,\mathfrak{t}_{2}}}divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG is constant,there is no convexity adjustment,i.e. tτ(𝔱1,𝔱2)=1superscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱21\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{2})=1fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = 1.

  • More interestingly, if 𝔱2=τsubscript𝔱2𝜏\mathfrak{t}_{2}=\taufraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_τ, thenΣt𝔱2,τ=Σt𝔱2,𝔱2=Ξ𝔱2(t,t)Ξ𝔱2(t,t)=0superscriptsubscriptΣ𝑡subscript𝔱2𝜏superscriptsubscriptΣ𝑡subscript𝔱2subscript𝔱2subscriptΞsubscript𝔱2𝑡𝑡subscriptΞsubscript𝔱2𝑡𝑡0\Sigma_{t}^{\mathfrak{t}_{2},\tau}=\Sigma_{t}^{\mathfrak{t}_{2},\mathfrak{t}_{%2}}=\Xi_{\mathfrak{t}_{2}}(t,t)-\Xi_{\mathfrak{t}_{2}}(t,t)=0roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT = roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = roman_Ξ start_POSTSUBSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t , italic_t ) - roman_Ξ start_POSTSUBSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t , italic_t ) = 0 and

    tτ(𝔱1,𝔱2)=t𝔱2(𝔱1,𝔱2)=exp{0t(Σs𝔱2,𝔱2Σs𝔱1,𝔱2)Σs𝔱2,𝔱2γ𝔚(s)ds}=1,superscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱2superscriptsubscript𝑡subscript𝔱2subscript𝔱1subscript𝔱2superscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱2subscript𝔱2superscriptsubscriptΣ𝑠subscript𝔱1subscript𝔱2superscriptsubscriptΣ𝑠subscript𝔱2subscript𝔱2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠1\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{2})=\mathfrak{C}_{t}^{%\mathfrak{t}_{2}}(\mathfrak{t}_{1},\mathfrak{t}_{2})=\exp\left\{\int_{0}^{t}%\left(\Sigma_{s}^{\mathfrak{t}_{2},\mathfrak{t}_{2}}-\Sigma_{s}^{\mathfrak{t}_%{1},\mathfrak{t}_{2}}\right)\Sigma_{s}^{\mathfrak{t}_{2},\mathfrak{t}_{2}}%\gamma^{\prime}_{\mathfrak{W}}(s)\mathrm{d}s\right\}=1,fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s } = 1 ,

    and the process(Pt,𝔱1Pt,𝔱2)t0subscriptsubscript𝑃𝑡subscript𝔱1subscript𝑃𝑡subscript𝔱2𝑡0\displaystyle\left(\frac{P_{t,\mathfrak{t}_{1}}}{P_{t,\mathfrak{t}_{2}}}\right%)_{t\geq 0}( divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ) start_POSTSUBSCRIPT italic_t ≥ 0 end_POSTSUBSCRIPT is a τsuperscript𝜏\mathbb{Q}^{\tau}blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT-martingale on [0,𝔱1𝔱2]0subscript𝔱1subscript𝔱2[0,\mathfrak{t}_{1}\wedge\mathfrak{t}_{2}][ 0 , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∧ fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ].

  • Regarding the sign of the convexity adjustment, we have

    Σs𝔱2,τΣs𝔱1,τsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏superscriptsubscriptΣ𝑠subscript𝔱1𝜏\displaystyle\Sigma_{s}^{\mathfrak{t}_{2},\tau}-\Sigma_{s}^{\mathfrak{t}_{1},\tau}roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT=(Ξ𝔱2(s,s)Ξτ(s,s))(Ξ𝔱1(s,s)Ξτ(s,s))absentsubscriptΞsubscript𝔱2𝑠𝑠subscriptΞ𝜏𝑠𝑠subscriptΞsubscript𝔱1𝑠𝑠subscriptΞ𝜏𝑠𝑠\displaystyle=\Big{(}\Xi_{\mathfrak{t}_{2}}(s,s)-\Xi_{\tau}(s,s)\Big{)}-\Big{(%}\Xi_{\mathfrak{t}_{1}}(s,s)-\Xi_{\tau}(s,s)\Big{)}= ( roman_Ξ start_POSTSUBSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s , italic_s ) - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_s , italic_s ) ) - ( roman_Ξ start_POSTSUBSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s , italic_s ) - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_s , italic_s ) )
    =Ξ𝔱2(s,s)Ξ𝔱1(s,s)absentsubscriptΞsubscript𝔱2𝑠𝑠subscriptΞsubscript𝔱1𝑠𝑠\displaystyle=\Xi_{\mathfrak{t}_{2}}(s,s)-\Xi_{\mathfrak{t}_{1}}(s,s)= roman_Ξ start_POSTSUBSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s , italic_s ) - roman_Ξ start_POSTSUBSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s , italic_s )
    =s𝔱2φ(z,s)dz+s𝔱2φ(z,s)dz=𝔱1𝔱2φ(z,s)dz.absentsuperscriptsubscript𝑠subscript𝔱2𝜑𝑧𝑠differential-d𝑧superscriptsubscript𝑠subscript𝔱2𝜑𝑧𝑠differential-d𝑧superscriptsubscriptsubscript𝔱1subscript𝔱2𝜑𝑧𝑠differential-d𝑧\displaystyle=-\int_{s}^{\mathfrak{t}_{2}}\varphi(z,s)\mathrm{d}z+\int_{s}^{%\mathfrak{t}_{2}}\varphi(z,s)\mathrm{d}z=-\int_{\mathfrak{t}_{1}}^{\mathfrak{t%}_{2}}\varphi(z,s)\mathrm{d}z.= - ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_φ ( italic_z , italic_s ) roman_d italic_z + ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_φ ( italic_z , italic_s ) roman_d italic_z = - ∫ start_POSTSUBSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_φ ( italic_z , italic_s ) roman_d italic_z .

    Since φ()𝜑\varphi(\cdot)italic_φ ( ⋅ ) is strictly positive, thensgn(Σs𝔱2,τΣs𝔱1,τ)=sgn(𝔱1𝔱2)sgnsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏superscriptsubscriptΣ𝑠subscript𝔱1𝜏sgnsubscript𝔱1subscript𝔱2\operatorname{sgn}(\Sigma_{s}^{\mathfrak{t}_{2},\tau}-\Sigma_{s}^{\mathfrak{t}%_{1},\tau})=\operatorname{sgn}(\mathfrak{t}_{1}-\mathfrak{t}_{2})roman_sgn ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) = roman_sgn ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).Furthermore, since

    Σs𝔱2,τ=Ξ𝔱2(s,s)Ξτ(s,s)=s𝔱2φ(z,s)dz+sτφ(z,s)dz=𝔱2τφ(z,s)dz,superscriptsubscriptΣ𝑠subscript𝔱2𝜏subscriptΞsubscript𝔱2𝑠𝑠subscriptΞ𝜏𝑠𝑠superscriptsubscript𝑠subscript𝔱2𝜑𝑧𝑠differential-d𝑧superscriptsubscript𝑠𝜏𝜑𝑧𝑠differential-d𝑧superscriptsubscriptsubscript𝔱2𝜏𝜑𝑧𝑠differential-d𝑧\Sigma_{s}^{\mathfrak{t}_{2},\tau}=\Xi_{\mathfrak{t}_{2}}(s,s)-\Xi_{\tau}(s,s)%=-\int_{s}^{\mathfrak{t}_{2}}\varphi(z,s)\mathrm{d}z+\int_{s}^{\tau}\varphi(z,%s)\mathrm{d}z=\int_{\mathfrak{t}_{2}}^{\tau}\varphi(z,s)\mathrm{d}z,roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT = roman_Ξ start_POSTSUBSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s , italic_s ) - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_s , italic_s ) = - ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_φ ( italic_z , italic_s ) roman_d italic_z + ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT italic_φ ( italic_z , italic_s ) roman_d italic_z = ∫ start_POSTSUBSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT italic_φ ( italic_z , italic_s ) roman_d italic_z ,

    then sgn(Σs𝔱2,τ)=sgn(τ𝔱2)sgnsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏sgn𝜏subscript𝔱2\operatorname{sgn}(\Sigma_{s}^{\mathfrak{t}_{2},\tau})=\operatorname{sgn}(\tau%-\mathfrak{t}_{2})roman_sgn ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) = roman_sgn ( italic_τ - fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ),and therefore, assuming γ𝔚subscriptsuperscript𝛾𝔚\gamma^{\prime}_{\mathfrak{W}}italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT strictly positive (as will be the case in all the examples considered here),

    sgn(logtτ(𝔱1,𝔱2))sgnsuperscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱2\operatorname{sgn}(\log\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{%2}))roman_sgn ( roman_log fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) )𝔱1>𝔱2subscript𝔱1subscript𝔱2\mathfrak{t}_{1}>\mathfrak{t}_{2}fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT𝔱1<𝔱2subscript𝔱1subscript𝔱2\mathfrak{t}_{1}<\mathfrak{t}_{2}fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT
    τ<𝔱2𝜏subscript𝔱2\tau<\mathfrak{t}_{2}italic_τ < fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTnegativepositive
    τ>𝔱2𝜏subscript𝔱2\tau>\mathfrak{t}_{2}italic_τ > fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTpositivenegative

    Considering without generality 𝔱1<𝔱2subscript𝔱1subscript𝔱2\mathfrak{t}_{1}<\mathfrak{t}_{2}fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, the convexity adjustmentis therefore greater than1111 for τ<𝔱2𝜏subscript𝔱2\tau<\mathfrak{t}_{2}italic_τ < fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTand less than1111 above.

Proof of Proposition2.11.

Underτsuperscript𝜏\mathbb{Q}^{\tau}blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT, the process defined as Xt:=Pt,T/Pt,τassignsubscript𝑋𝑡subscript𝑃𝑡𝑇subscript𝑃𝑡𝜏X_{t}:=P_{t,T}/P_{t,\tau}italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT := italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT / italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPTsatisfies dXt=XtΣtT,τd𝔚tτdsubscript𝑋𝑡subscript𝑋𝑡superscriptsubscriptΣ𝑡𝑇𝜏dsuperscriptsubscript𝔚𝑡superscript𝜏\mathrm{d}X_{t}=X_{t}\Sigma_{t}^{T,\tau}\mathrm{d}\mathfrak{W}_{t}^{\mathbb{Q}%^{\tau}}roman_d italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT, is clearly lognormaland hence Itô’s formula implies

dlog(Xt)=dXtXt12dX,XtXt2=ΣtT,τd𝔚tτ12(ΣtT,τ)2γ𝔚(t)dt,dsubscript𝑋𝑡dsubscript𝑋𝑡subscript𝑋𝑡12dsubscript𝑋𝑋𝑡superscriptsubscript𝑋𝑡2superscriptsubscriptΣ𝑡𝑇𝜏dsuperscriptsubscript𝔚𝑡superscript𝜏12superscriptsuperscriptsubscriptΣ𝑡𝑇𝜏2subscriptsuperscript𝛾𝔚𝑡d𝑡\mathrm{d}\log(X_{t})=\frac{\mathrm{d}X_{t}}{X_{t}}-\frac{1}{2}\frac{\mathrm{d%}\langle X,X\rangle_{t}}{X_{t}^{2}}=\Sigma_{t}^{T,\tau}\mathrm{d}\mathfrak{W}_%{t}^{\mathbb{Q}^{\tau}}-\frac{1}{2}\left(\Sigma_{t}^{T,\tau}\right)^{2}\gamma^%{\prime}_{\mathfrak{W}}(t)\mathrm{d}t,roman_d roman_log ( italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) = divide start_ARG roman_d italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG start_ARG italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG roman_d ⟨ italic_X , italic_X ⟩ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG start_ARG italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) roman_d italic_t ,

so that

Xt=X0exp{0tΣsT,τd𝔚s120t(ΣsT,τ)2γ𝔚(s)ds},subscript𝑋𝑡subscript𝑋0superscriptsubscript0𝑡superscriptsubscriptΣ𝑠𝑇𝜏differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡superscriptsuperscriptsubscriptΣ𝑠𝑇𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠X_{t}=X_{0}\exp\left\{\int_{0}^{t}\Sigma_{s}^{T,\tau}\mathrm{d}\mathfrak{W}_{s%}-\frac{1}{2}\int_{0}^{t}\left(\Sigma_{s}^{T,\tau}\right)^{2}\gamma^{\prime}_{%\mathfrak{W}}(s)\mathrm{d}s\right\},italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_X start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s } ,

and therefore

Pt,TPt,τ=P0,TP0,τexp{0tΣsT,τd𝔚s120t(ΣsT,τ)2γ𝔚(s)ds}.subscript𝑃𝑡𝑇subscript𝑃𝑡𝜏subscript𝑃0𝑇subscript𝑃0𝜏superscriptsubscript0𝑡superscriptsubscriptΣ𝑠𝑇𝜏differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡superscriptsuperscriptsubscriptΣ𝑠𝑇𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\frac{P_{t,T}}{P_{t,\tau}}=\frac{P_{0,T}}{P_{0,\tau}}\exp\left\{\int_{0}^{t}%\Sigma_{s}^{T,\tau}\mathrm{d}\mathfrak{W}_{s}-\frac{1}{2}\int_{0}^{t}\left(%\Sigma_{s}^{T,\tau}\right)^{2}\gamma^{\prime}_{\mathfrak{W}}(s)\mathrm{d}s%\right\}.divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_τ end_POSTSUBSCRIPT end_ARG roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s } .

With successively T=𝔱1𝑇subscript𝔱1T=\mathfrak{t}_{1}italic_T = fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T=𝔱2𝑇subscript𝔱2T=\mathfrak{t}_{2}italic_T = fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, we can then write

Pt,𝔱1Pt,τsubscript𝑃𝑡subscript𝔱1subscript𝑃𝑡𝜏\displaystyle\frac{P_{t,\mathfrak{t}_{1}}}{P_{t,\tau}}divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG=P0,𝔱1P0,τexp{0tΣs𝔱1,τd𝔚s120t(Σs𝔱1,τ)2γ𝔚(s)ds},absentsubscript𝑃0subscript𝔱1subscript𝑃0𝜏superscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱1𝜏differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡superscriptsuperscriptsubscriptΣ𝑠subscript𝔱1𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\displaystyle=\frac{P_{0,\mathfrak{t}_{1}}}{P_{0,\tau}}\exp\left\{\int_{0}^{t}%\Sigma_{s}^{\mathfrak{t}_{1},\tau}\mathrm{d}\mathfrak{W}_{s}-\frac{1}{2}\int_{%0}^{t}\left(\Sigma_{s}^{\mathfrak{t}_{1},\tau}\right)^{2}\gamma^{\prime}_{%\mathfrak{W}}(s)\mathrm{d}s\right\},= divide start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_τ end_POSTSUBSCRIPT end_ARG roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s } ,
Pt,𝔱2Pt,τsubscript𝑃𝑡subscript𝔱2subscript𝑃𝑡𝜏\displaystyle\frac{P_{t,\mathfrak{t}_{2}}}{P_{t,\tau}}divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_τ end_POSTSUBSCRIPT end_ARG=P0,𝔱2P0,τexp{0tΣs𝔱2,τd𝔚s120t(Σs𝔱2,τ)2γ𝔚(s)ds},absentsubscript𝑃0subscript𝔱2subscript𝑃0𝜏superscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱2𝜏differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡superscriptsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\displaystyle=\frac{P_{0,\mathfrak{t}_{2}}}{P_{0,\tau}}\exp\left\{\int_{0}^{t}%\Sigma_{s}^{\mathfrak{t}_{2},\tau}\mathrm{d}\mathfrak{W}_{s}-\frac{1}{2}\int_{%0}^{t}\left(\Sigma_{s}^{\mathfrak{t}_{2},\tau}\right)^{2}\gamma^{\prime}_{%\mathfrak{W}}(s)\mathrm{d}s\right\},= divide start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_τ end_POSTSUBSCRIPT end_ARG roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s } ,

so that

Pt,𝔱1Pt,𝔱2subscript𝑃𝑡subscript𝔱1subscript𝑃𝑡subscript𝔱2\displaystyle\frac{P_{t,\mathfrak{t}_{1}}}{P_{t,\mathfrak{t}_{2}}}divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG=P0,𝔱1P0,𝔱2exp{0tΣs𝔱1,τd𝔚s120t(Σs𝔱1,τ)2γ𝔚(s)ds0tΣs𝔱2,τd𝔚s+120t(Σs𝔱2,τ)2γ𝔚(s)ds}absentsubscript𝑃0subscript𝔱1subscript𝑃0subscript𝔱2superscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱1𝜏differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡superscriptsuperscriptsubscriptΣ𝑠subscript𝔱1𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠superscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱2𝜏differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡superscriptsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\displaystyle=\frac{P_{0,\mathfrak{t}_{1}}}{P_{0,\mathfrak{t}_{2}}}\exp\left\{%\int_{0}^{t}\Sigma_{s}^{\mathfrak{t}_{1},\tau}\mathrm{d}\mathfrak{W}_{s}-\frac%{1}{2}\int_{0}^{t}\left(\Sigma_{s}^{\mathfrak{t}_{1},\tau}\right)^{2}\gamma^{%\prime}_{\mathfrak{W}}(s)\mathrm{d}s-\int_{0}^{t}\Sigma_{s}^{\mathfrak{t}_{2},%\tau}\mathrm{d}\mathfrak{W}_{s}+\frac{1}{2}\int_{0}^{t}\left(\Sigma_{s}^{%\mathfrak{t}_{2},\tau}\right)^{2}\gamma^{\prime}_{\mathfrak{W}}(s)\mathrm{d}s\right\}= divide start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s }
=P0,𝔱1P0,𝔱2exp{0t(Σs𝔱1,τΣs𝔱2,τ)d𝔚s+120t[(Σs𝔱2,τ)2(Σs𝔱1,τ)2]γ𝔚(s)ds}absentsubscript𝑃0subscript𝔱1subscript𝑃0subscript𝔱2superscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱1𝜏superscriptsubscriptΣ𝑠subscript𝔱2𝜏differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡delimited-[]superscriptsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏2superscriptsuperscriptsubscriptΣ𝑠subscript𝔱1𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\displaystyle=\frac{P_{0,\mathfrak{t}_{1}}}{P_{0,\mathfrak{t}_{2}}}\exp\left\{%\int_{0}^{t}\left(\Sigma_{s}^{\mathfrak{t}_{1},\tau}-\Sigma_{s}^{\mathfrak{t}_%{2},\tau}\right)\mathrm{d}\mathfrak{W}_{s}+\frac{1}{2}\int_{0}^{t}\left[\left(%\Sigma_{s}^{\mathfrak{t}_{2},\tau}\right)^{2}-\left(\Sigma_{s}^{\mathfrak{t}_{%1},\tau}\right)^{2}\right]\gamma^{\prime}_{\mathfrak{W}}(s)\mathrm{d}s\right\}= divide start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT [ ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s }
=P0,𝔱1P0,𝔱2exp{0t(Σs𝔱1,τΣs𝔱2,τ)d𝔚s120t(Σs𝔱1,τΣs𝔱2,τ)2γ𝔚(s)ds}absentsubscript𝑃0subscript𝔱1subscript𝑃0subscript𝔱2superscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱1𝜏superscriptsubscriptΣ𝑠subscript𝔱2𝜏differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡superscriptsuperscriptsubscriptΣ𝑠subscript𝔱1𝜏superscriptsubscriptΣ𝑠subscript𝔱2𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\displaystyle=\frac{P_{0,\mathfrak{t}_{1}}}{P_{0,\mathfrak{t}_{2}}}\exp\left\{%\int_{0}^{t}\left(\Sigma_{s}^{\mathfrak{t}_{1},\tau}-\Sigma_{s}^{\mathfrak{t}_%{2},\tau}\right)\mathrm{d}\mathfrak{W}_{s}-\frac{1}{2}\int_{0}^{t}\left(\Sigma%_{s}^{\mathfrak{t}_{1},\tau}-\Sigma_{s}^{\mathfrak{t}_{2},\tau}\right)^{2}%\gamma^{\prime}_{\mathfrak{W}}(s)\mathrm{d}s\right\}= divide start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s }
exp{120t[(Σs𝔱1,τ)2+(Σs𝔱2,τ)22Σs𝔱1,τΣs𝔱2,τ]γ𝔚(s)ds+120t[(Σs𝔱2,τ)2(Σs𝔱1,τ)2]γ𝔚(s)ds}12superscriptsubscript0𝑡delimited-[]superscriptsuperscriptsubscriptΣ𝑠subscript𝔱1𝜏2superscriptsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏22superscriptsubscriptΣ𝑠subscript𝔱1𝜏superscriptsubscriptΣ𝑠subscript𝔱2𝜏subscriptsuperscript𝛾𝔚𝑠differential-d𝑠12superscriptsubscript0𝑡delimited-[]superscriptsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏2superscriptsuperscriptsubscriptΣ𝑠subscript𝔱1𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\displaystyle\qquad\exp\left\{\frac{1}{2}\int_{0}^{t}\left[\left(\Sigma_{s}^{%\mathfrak{t}_{1},\tau}\right)^{2}+\left(\Sigma_{s}^{\mathfrak{t}_{2},\tau}%\right)^{2}-2\Sigma_{s}^{\mathfrak{t}_{1},\tau}\Sigma_{s}^{\mathfrak{t}_{2},%\tau}\right]\gamma^{\prime}_{\mathfrak{W}}(s)\mathrm{d}s+\frac{1}{2}\int_{0}^{%t}\left[\left(\Sigma_{s}^{\mathfrak{t}_{2},\tau}\right)^{2}-\left(\Sigma_{s}^{%\mathfrak{t}_{1},\tau}\right)^{2}\right]\gamma^{\prime}_{\mathfrak{W}}(s)%\mathrm{d}s\right\}roman_exp { divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT [ ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ] italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT [ ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s }
=P0,𝔱1P0,𝔱2exp{0t(Σs𝔱1,τΣs𝔱2,τ)d𝔚s120t(Σs𝔱1,τΣs𝔱2,τ)2γ𝔚(s)ds}absentsubscript𝑃0subscript𝔱1subscript𝑃0subscript𝔱2superscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱1𝜏superscriptsubscriptΣ𝑠subscript𝔱2𝜏differential-dsubscript𝔚𝑠12superscriptsubscript0𝑡superscriptsuperscriptsubscriptΣ𝑠subscript𝔱1𝜏superscriptsubscriptΣ𝑠subscript𝔱2𝜏2subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\displaystyle=\frac{P_{0,\mathfrak{t}_{1}}}{P_{0,\mathfrak{t}_{2}}}\exp\left\{%\int_{0}^{t}\left(\Sigma_{s}^{\mathfrak{t}_{1},\tau}-\Sigma_{s}^{\mathfrak{t}_%{2},\tau}\right)\mathrm{d}\mathfrak{W}_{s}-\frac{1}{2}\int_{0}^{t}\left(\Sigma%_{s}^{\mathfrak{t}_{1},\tau}-\Sigma_{s}^{\mathfrak{t}_{2},\tau}\right)^{2}%\gamma^{\prime}_{\mathfrak{W}}(s)\mathrm{d}s\right\}= divide start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) roman_d fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s }
exp{0t[(Σs𝔱2,τ)2Σs𝔱1,τΣs𝔱2,τ]γ𝔚(s)ds}.superscriptsubscript0𝑡delimited-[]superscriptsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏2superscriptsubscriptΣ𝑠subscript𝔱1𝜏superscriptsubscriptΣ𝑠subscript𝔱2𝜏subscriptsuperscript𝛾𝔚𝑠differential-d𝑠\displaystyle\qquad\exp\left\{\int_{0}^{t}\left[\left(\Sigma_{s}^{\mathfrak{t}%_{2},\tau}\right)^{2}-\Sigma_{s}^{\mathfrak{t}_{1},\tau}\Sigma_{s}^{\mathfrak{%t}_{2},\tau}\right]\gamma^{\prime}_{\mathfrak{W}}(s)\mathrm{d}s\right\}.roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT [ ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ] italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_s ) roman_d italic_s } .

The first exponential is a Doléans-Dade exponential martingale underτsuperscript𝜏\mathbb{Q}^{\tau}blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT, thus hasτsuperscript𝜏\mathbb{Q}^{\tau}blackboard_Q start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT-expectation equal to one, and the proposition follows.∎

2.3. Examples

Let 𝔚=W𝔚𝑊\mathfrak{W}=Wfraktur_W = italic_W be a standard Brownian motion,so that γ𝔚(t)=tsubscript𝛾𝔚𝑡𝑡\gamma_{\mathfrak{W}}(t)=titalic_γ start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) = italic_t and γ𝔚(t)=1subscriptsuperscript𝛾𝔚𝑡1\gamma^{\prime}_{\mathfrak{W}}(t)=1italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) = 1.

2.3.1. Exponential kernels

Assume that φ(t)=eαt𝜑𝑡superscripte𝛼𝑡\varphi(t)=\mathrm{e}^{-\alpha t}italic_φ ( italic_t ) = roman_e start_POSTSUPERSCRIPT - italic_α italic_t end_POSTSUPERSCRIPT for some α>0𝛼0\alpha>0italic_α > 0, then the short rate process is of Ornstein-Uhlenbeck type and

ΞT(t,u)=Φ(Tu)Φ(tu)withΦ(z):=1αeαz.formulae-sequencesubscriptΞ𝑇𝑡𝑢Φ𝑇𝑢Φ𝑡𝑢withassignΦ𝑧1𝛼superscripte𝛼𝑧\Xi_{T}(t,u)=\Phi(T-u)-\Phi(t-u)\qquad\text{with}\qquad\Phi(z):=\frac{1}{%\alpha}\mathrm{e}^{-\alpha z}.roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) = roman_Φ ( italic_T - italic_u ) - roman_Φ ( italic_t - italic_u ) with roman_Φ ( italic_z ) := divide start_ARG 1 end_ARG start_ARG italic_α end_ARG roman_e start_POSTSUPERSCRIPT - italic_α italic_z end_POSTSUPERSCRIPT .

We can further computeΞτ(t,t)=Φ(τ,t)Φ(t,t)subscriptΞ𝜏𝑡𝑡Φ𝜏𝑡Φ𝑡𝑡\Xi_{\tau}(t,t)=\Phi(\tau,t)-\Phi(t,t)roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) = roman_Φ ( italic_τ , italic_t ) - roman_Φ ( italic_t , italic_t ), and

ΣtT,τ=ΞT(t,t)Ξτ(t,t)=Φ(T,t)Φ(t,t)Φ(τ,t)+Φ(t,t)=Φ(T,t)Φ(τ,t).superscriptsubscriptΣ𝑡𝑇𝜏subscriptΞ𝑇𝑡𝑡subscriptΞ𝜏𝑡𝑡Φ𝑇𝑡Φ𝑡𝑡Φ𝜏𝑡Φ𝑡𝑡Φ𝑇𝑡Φ𝜏𝑡\Sigma_{t}^{T,\tau}=\Xi_{T}(t,t)-\Xi_{\tau}(t,t)=\Phi(T,t)-\Phi(t,t)-\Phi(\tau%,t)+\Phi(t,t)=\Phi(T,t)-\Phi(\tau,t).roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT = roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_t ) - roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) = roman_Φ ( italic_T , italic_t ) - roman_Φ ( italic_t , italic_t ) - roman_Φ ( italic_τ , italic_t ) + roman_Φ ( italic_t , italic_t ) = roman_Φ ( italic_T , italic_t ) - roman_Φ ( italic_τ , italic_t ) .

Therefore the diffusion coefficientΣtT,τsuperscriptsubscriptΣ𝑡𝑇𝜏\Sigma_{t}^{T,\tau}roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPTand the Girsanov driftΞτ(t,t)subscriptΞ𝜏𝑡𝑡\Xi_{\tau}(t,t)roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) read

Ξτ(t,t)=1α(eα(τt)1)andΣtT,τ=1α(eα(Tt)eα(τt)).formulae-sequencesubscriptΞ𝜏𝑡𝑡1𝛼superscripte𝛼𝜏𝑡1andsuperscriptsubscriptΣ𝑡𝑇𝜏1𝛼superscripte𝛼𝑇𝑡superscripte𝛼𝜏𝑡\Xi_{\tau}(t,t)=\frac{1}{\alpha}\left(\mathrm{e}^{-\alpha(\tau-t)}-1\right)%\qquad\text{and}\qquad\Sigma_{t}^{T,\tau}=\frac{1}{\alpha}\left(\mathrm{e}^{-%\alpha(T-t)}-\mathrm{e}^{-\alpha(\tau-t)}\right).roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) = divide start_ARG 1 end_ARG start_ARG italic_α end_ARG ( roman_e start_POSTSUPERSCRIPT - italic_α ( italic_τ - italic_t ) end_POSTSUPERSCRIPT - 1 ) and roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG italic_α end_ARG ( roman_e start_POSTSUPERSCRIPT - italic_α ( italic_T - italic_t ) end_POSTSUPERSCRIPT - roman_e start_POSTSUPERSCRIPT - italic_α ( italic_τ - italic_t ) end_POSTSUPERSCRIPT ) .

Finally, regarding the convexity adjustment,

logtτ(𝔱1,𝔱2)=e2αt12α3{(eα𝔱1eα𝔱2)eατ+e2α𝔱2eα(𝔱1+𝔱2)}.superscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱2superscripte2𝛼𝑡12superscript𝛼3superscripte𝛼subscript𝔱1superscripte𝛼subscript𝔱2superscripte𝛼𝜏superscripte2𝛼subscript𝔱2superscripte𝛼subscript𝔱1subscript𝔱2\log\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{2})=\frac{\mathrm{e%}^{2\alpha t}-1}{2\alpha^{3}}\left\{\left(\mathrm{e}^{-\alpha\mathfrak{t}_{1}}%-\mathrm{e}^{-\alpha\mathfrak{t}_{2}}\right)\mathrm{e}^{-\alpha\tau}+\mathrm{e%}^{-2\alpha\mathfrak{t}_{2}}-\mathrm{e}^{-\alpha(\mathfrak{t}_{1}+\mathfrak{t}%_{2})}\right\}.roman_log fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = divide start_ARG roman_e start_POSTSUPERSCRIPT 2 italic_α italic_t end_POSTSUPERSCRIPT - 1 end_ARG start_ARG 2 italic_α start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG { ( roman_e start_POSTSUPERSCRIPT - italic_α fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - roman_e start_POSTSUPERSCRIPT - italic_α fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) roman_e start_POSTSUPERSCRIPT - italic_α italic_τ end_POSTSUPERSCRIPT + roman_e start_POSTSUPERSCRIPT - 2 italic_α fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - roman_e start_POSTSUPERSCRIPT - italic_α ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT } .

Note that, asα𝛼\alphaitalic_α tends to zero,namely rt=θ(t)+Wtsubscript𝑟𝑡𝜃𝑡subscript𝑊𝑡r_{t}=\theta(t)+W_{t}italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_θ ( italic_t ) + italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT (in the limit), we obtain

tτ(𝔱1,𝔱2)=exp{(𝔱2𝔱1)(𝔱2τ)t}.superscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱2subscript𝔱2subscript𝔱1subscript𝔱2𝜏𝑡\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{2})=\exp\Big{\{}(%\mathfrak{t}_{2}-\mathfrak{t}_{1})(\mathfrak{t}_{2}-\tau)t\Big{\}}.fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = roman_exp { ( fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_τ ) italic_t } .

2.3.2. Riemann-Liouville kernels

Let H(0,1)𝐻01H\in(0,1)italic_H ∈ ( 0 , 1 ) and H±:=H±12assignsubscript𝐻plus-or-minusplus-or-minus𝐻12H_{\pm}:=H\pm\frac{1}{2}italic_H start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT := italic_H ± divide start_ARG 1 end_ARG start_ARG 2 end_ARG.If φ(t)=tH𝜑𝑡superscript𝑡subscript𝐻\varphi(t)=t^{H_{-}}italic_φ ( italic_t ) = italic_t start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT - end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, with , the short rate process(1.1) is driven by a Riemann-Liouville fractional Brownian motion with Hurst exponentH𝐻Hitalic_H.Furthermore, with H+:=H+12assignsubscript𝐻𝐻12H_{+}:=H+\frac{1}{2}italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT := italic_H + divide start_ARG 1 end_ARG start_ARG 2 end_ARG,

ΞT(t,u)=Φ(Tu)Φ(tu)withΦ(z):=zH+H+.formulae-sequencesubscriptΞ𝑇𝑡𝑢Φ𝑇𝑢Φ𝑡𝑢withassignΦ𝑧superscript𝑧subscript𝐻subscript𝐻\Xi_{T}(t,u)=\Phi(T-u)-\Phi(t-u)\qquad\text{with}\qquad\Phi(z):=-\frac{z^{H_{+%}}}{H_{+}}.roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) = roman_Φ ( italic_T - italic_u ) - roman_Φ ( italic_t - italic_u ) with roman_Φ ( italic_z ) := - divide start_ARG italic_z start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG .

Therefore the diffusion coefficientΣtT,τsuperscriptsubscriptΣ𝑡𝑇𝜏\Sigma_{t}^{T,\tau}roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT and Girsanov driftΞτ(t,t)subscriptΞ𝜏𝑡𝑡\Xi_{\tau}(t,t)roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) read

Ξτ(t,t)=(τt)H+H+andΣtT,τ=(τt)H+(Tt)H+H+.formulae-sequencesubscriptΞ𝜏𝑡𝑡superscript𝜏𝑡subscript𝐻subscript𝐻andsuperscriptsubscriptΣ𝑡𝑇𝜏superscript𝜏𝑡subscript𝐻superscript𝑇𝑡subscript𝐻subscript𝐻\Xi_{\tau}(t,t)=-\frac{(\tau-t)^{H_{+}}}{H_{+}}\qquad\text{and}\qquad\Sigma_{t%}^{T,\tau}=\frac{(\tau-t)^{H_{+}}-(T-t)^{H_{+}}}{H_{+}}.roman_Ξ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_t , italic_t ) = - divide start_ARG ( italic_τ - italic_t ) start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG and roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT = divide start_ARG ( italic_τ - italic_t ) start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - ( italic_T - italic_t ) start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG .

Regarding the convexity adjustment, we instead have

tτ(𝔱1,𝔱2)superscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱2\displaystyle\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{2})fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )=exp{0t(Σs𝔱2,τΣs𝔱1,τ)Σs𝔱2,τds}absentsuperscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱2𝜏superscriptsubscriptΣ𝑠subscript𝔱1𝜏superscriptsubscriptΣ𝑠subscript𝔱2𝜏differential-d𝑠\displaystyle=\exp\left\{\int_{0}^{t}\left(\Sigma_{s}^{\mathfrak{t}_{2},\tau}-%\Sigma_{s}^{\mathfrak{t}_{1},\tau}\right)\Sigma_{s}^{\mathfrak{t}_{2},\tau}%\mathrm{d}s\right\}= roman_exp { ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT roman_d italic_s }

Unfortunately, there does not seem to be a closed-form simplification here. We can however provide the following approximations:

Lemma 2.13.

The following asymptotic expansions are straightforward and provide some closed-form expressions that may help the reader grasp a flavour on the roles of the parameters:

  • As t𝑡titalic_t tends to zero,

    logtτ(𝔱1,𝔱2)=tH+2(𝔱2H+𝔱1H+)(𝔱2H+τH+)+𝒪(t2).superscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱2𝑡superscriptsubscript𝐻2superscriptsubscript𝔱2subscript𝐻superscriptsubscript𝔱1subscript𝐻superscriptsubscript𝔱2subscript𝐻superscript𝜏subscript𝐻𝒪superscript𝑡2\log\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{2})=\frac{t}{H_{+}^%{2}}\left(\mathfrak{t}_{2}^{H_{+}}-\mathfrak{t}_{1}^{H_{+}}\right)\left(%\mathfrak{t}_{2}^{H_{+}}-\tau^{H_{+}}\right)+\mathcal{O}\left(t^{2}\right).roman_log fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = divide start_ARG italic_t end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ( fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - italic_τ start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) + caligraphic_O ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .
  • For any η>0𝜂0\eta>0italic_η > 0, as ε𝜀\varepsilonitalic_ε tend to zero,

    logt𝔱1ε(𝔱1,𝔱1+ε)=1+η2H(𝔱12H(𝔱1t)2H)ε2+𝒪(ε3).superscriptsubscript𝑡subscript𝔱1𝜀subscript𝔱1subscript𝔱1𝜀1𝜂2𝐻superscriptsubscript𝔱12𝐻superscriptsubscript𝔱1𝑡2𝐻superscript𝜀2𝒪superscript𝜀3\log\mathfrak{C}_{t}^{\mathfrak{t}_{1}-\varepsilon}(\mathfrak{t}_{1},\mathfrak%{t}_{1}+\varepsilon)=\frac{1+\eta}{2H}\Big{(}\mathfrak{t}_{1}^{2H}-(\mathfrak{%t}_{1}-t)^{2H}\Big{)}\varepsilon^{2}+\mathcal{O}\left(\varepsilon^{3}\right).roman_log fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_ε end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_ε ) = divide start_ARG 1 + italic_η end_ARG start_ARG 2 italic_H end_ARG ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_H end_POSTSUPERSCRIPT - ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_t ) start_POSTSUPERSCRIPT 2 italic_H end_POSTSUPERSCRIPT ) italic_ε start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + caligraphic_O ( italic_ε start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) .
Proof.

From the explicit computation ofΣtT,τsuperscriptsubscriptΣ𝑡𝑇𝜏\Sigma_{t}^{T,\tau}roman_Σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT above, we can write, ass𝑠sitalic_s tends to zero,

ΣsT,τ=(τs)H+(Ts)H+H+=τH+TH+H++𝒪(s).superscriptsubscriptΣ𝑠𝑇𝜏superscript𝜏𝑠subscript𝐻superscript𝑇𝑠subscript𝐻subscript𝐻superscript𝜏subscript𝐻superscript𝑇subscript𝐻subscript𝐻𝒪𝑠\Sigma_{s}^{T,\tau}=\frac{(\tau-s)^{H_{+}}-(T-s)^{H_{+}}}{H_{+}}=\frac{\tau^{H%_{+}}-T^{H_{+}}}{H_{+}}+\mathcal{O}(s).roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T , italic_τ end_POSTSUPERSCRIPT = divide start_ARG ( italic_τ - italic_s ) start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - ( italic_T - italic_s ) start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_τ start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - italic_T start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG + caligraphic_O ( italic_s ) .

As a function ofs𝑠sitalic_s, Σs𝔱2,τsuperscriptsubscriptΣ𝑠subscript𝔱2𝜏\Sigma_{s}^{\mathfrak{t}_{2},\tau}roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT is continuously differentiable.Because we are integrating over the compact [0,t]0𝑡[0,t][ 0 , italic_t ], we can integrate term by term, so that

logtτ(𝔱1,𝔱2)superscriptsubscript𝑡𝜏subscript𝔱1subscript𝔱2\displaystyle\log\mathfrak{C}_{t}^{\tau}(\mathfrak{t}_{1},\mathfrak{t}_{2})roman_log fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )=0t(Σs𝔱2,τΣs𝔱1,τ)Σs𝔱2,τdsabsentsuperscriptsubscript0𝑡superscriptsubscriptΣ𝑠subscript𝔱2𝜏superscriptsubscriptΣ𝑠subscript𝔱1𝜏superscriptsubscriptΣ𝑠subscript𝔱2𝜏differential-d𝑠\displaystyle=\int_{0}^{t}\left(\Sigma_{s}^{\mathfrak{t}_{2},\tau}-\Sigma_{s}^%{\mathfrak{t}_{1},\tau}\right)\Sigma_{s}^{\mathfrak{t}_{2},\tau}\mathrm{d}s= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT - roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT ) roman_Σ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ end_POSTSUPERSCRIPT roman_d italic_s
=0t{(τH+𝔱2H+H+τH+𝔱1H+H++𝒪(s))(τH+𝔱2H+H++𝒪(s))}dsabsentsuperscriptsubscript0𝑡superscript𝜏subscript𝐻superscriptsubscript𝔱2subscript𝐻subscript𝐻superscript𝜏subscript𝐻superscriptsubscript𝔱1subscript𝐻subscript𝐻𝒪𝑠superscript𝜏subscript𝐻superscriptsubscript𝔱2subscript𝐻subscript𝐻𝒪𝑠differential-d𝑠\displaystyle=\int_{0}^{t}\left\{\left(\frac{\tau^{H_{+}}-\mathfrak{t}_{2}^{H_%{+}}}{H_{+}}-\frac{\tau^{H_{+}}-\mathfrak{t}_{1}^{H_{+}}}{H_{+}}+\mathcal{O}(s%)\right)\left(\frac{\tau^{H_{+}}-\mathfrak{t}_{2}^{H_{+}}}{H_{+}}+\mathcal{O}(%s)\right)\right\}\mathrm{d}s= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT { ( divide start_ARG italic_τ start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG - divide start_ARG italic_τ start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG + caligraphic_O ( italic_s ) ) ( divide start_ARG italic_τ start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG + caligraphic_O ( italic_s ) ) } roman_d italic_s
=0t{(𝔱1H+𝔱2H+H++𝒪(s))(τH+𝔱2H+H++𝒪(s))}dsabsentsuperscriptsubscript0𝑡superscriptsubscript𝔱1subscript𝐻superscriptsubscript𝔱2subscript𝐻subscript𝐻𝒪𝑠superscript𝜏subscript𝐻superscriptsubscript𝔱2subscript𝐻subscript𝐻𝒪𝑠differential-d𝑠\displaystyle=\int_{0}^{t}\left\{\left(\frac{\mathfrak{t}_{1}^{H_{+}}-%\mathfrak{t}_{2}^{H_{+}}}{H_{+}}+\mathcal{O}(s)\right)\left(\frac{\tau^{H_{+}}%-\mathfrak{t}_{2}^{H_{+}}}{H_{+}}+\mathcal{O}(s)\right)\right\}\mathrm{d}s= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT { ( divide start_ARG fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG + caligraphic_O ( italic_s ) ) ( divide start_ARG italic_τ start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG + caligraphic_O ( italic_s ) ) } roman_d italic_s
=𝔱1H+𝔱2H+H+τH+𝔱2H+H+t+𝒪(t2),absentsuperscriptsubscript𝔱1subscript𝐻superscriptsubscript𝔱2subscript𝐻subscript𝐻superscript𝜏subscript𝐻superscriptsubscript𝔱2subscript𝐻subscript𝐻𝑡𝒪superscript𝑡2\displaystyle=\frac{\mathfrak{t}_{1}^{H_{+}}-\mathfrak{t}_{2}^{H_{+}}}{H_{+}}%\frac{\tau^{H_{+}}-\mathfrak{t}_{2}^{H_{+}}}{H_{+}}t+\mathcal{O}(t^{2}),= divide start_ARG fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG divide start_ARG italic_τ start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG italic_t + caligraphic_O ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ,

where we can check by direct computations that the term 𝒪(t2)𝒪superscript𝑡2\mathcal{O}(t^{2})caligraphic_O ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) is indeed non null.∎

2.4. Extension to smooth Gaussian Volterra semimartingale drivers

Let now𝔚𝔚\mathfrak{W}fraktur_W in(1.1) be a Gaussian Volterra process with a smooth kernel of the form

𝔚t=0tK(t,u)dWu,subscript𝔚𝑡superscriptsubscript0𝑡𝐾𝑡𝑢differential-dsubscript𝑊𝑢\mathfrak{W}_{t}=\int_{0}^{t}K(t,u)\mathrm{d}W_{u},fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_K ( italic_t , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ,

for some standard Brownian motionW𝑊Witalic_W.Assuming thatK𝐾Kitalic_K is a convolution kernel absolutely continuous with square integrable derivative,it follows by[3] that𝔚𝔚\mathfrak{W}fraktur_W is a Gaussian semimartingale (yet not necessarily a martingale) with the decomposition

𝔚t=0tK(u,u)dWu+0t(0u1K(u,s)dWs)du=:0tK(u,u)dWu+A(t),\mathfrak{W}_{t}=\int_{0}^{t}K(u,u)\mathrm{d}W_{u}+\int_{0}^{t}\left(\int_{0}^%{u}\partial_{1}K(u,s)\mathrm{d}W_{s}\right)\mathrm{d}u=:\int_{0}^{t}K(u,u)%\mathrm{d}W_{u}+A(t),fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_K ( italic_u , italic_s ) roman_d italic_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) roman_d italic_u = : ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + italic_A ( italic_t ) ,

whereA𝐴Aitalic_A is a process of bounded variation satisfyingdA(t)=A(t)dt=(0t1K(t,s)dWs)dtd𝐴𝑡superscript𝐴𝑡d𝑡superscriptsubscript0𝑡subscript1𝐾𝑡𝑠dsubscript𝑊𝑠d𝑡\mathrm{d}A(t)=A^{\prime}(t)\mathrm{d}t=\left(\int_{0}^{t}\partial_{1}K(t,s)%\mathrm{d}W_{s}\right)\mathrm{d}troman_d italic_A ( italic_t ) = italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) roman_d italic_t = ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_K ( italic_t , italic_s ) roman_d italic_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) roman_d italic_tand hence the Itô differential of𝔚tsubscript𝔚𝑡\mathfrak{W}_{t}fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT readsd𝔚t=K(t,t)dWt+A(t)dtdsubscript𝔚𝑡𝐾𝑡𝑡dsubscript𝑊𝑡superscript𝐴𝑡d𝑡\mathrm{d}\mathfrak{W}_{t}=K(t,t)\mathrm{d}W_{t}+A^{\prime}(t)\mathrm{d}troman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_K ( italic_t , italic_t ) roman_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) roman_d italic_t,and its quadratic variation isd𝔚,𝔚t=0tK(u,u)2dudsubscript𝔚𝔚𝑡superscriptsubscript0𝑡𝐾superscript𝑢𝑢2differential-d𝑢\mathrm{d}\langle\mathfrak{W},\mathfrak{W}\rangle_{t}=\int_{0}^{t}K(u,u)^{2}%\mathrm{d}uroman_d ⟨ fraktur_W , fraktur_W ⟩ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_K ( italic_u , italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u.The short rate process(1.1) therefore reads

rt=θ(t)+0tφ(tu)d𝔚u=θ(t)+0tφ(tu)(K(u,u)dWu+A(u)du)=θ~t+0tφ~(t,u)K(u,u)dWu,subscript𝑟𝑡𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢differential-dsubscript𝔚𝑢𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢𝐾𝑢𝑢dsubscript𝑊𝑢superscript𝐴𝑢d𝑢subscript~𝜃𝑡superscriptsubscript0𝑡~𝜑𝑡𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢r_{t}=\theta(t)+\int_{0}^{t}\varphi(t-u)\mathrm{d}\mathfrak{W}_{u}=\theta(t)+%\int_{0}^{t}\varphi(t-u)\left(K(u,u)\mathrm{d}W_{u}+A^{\prime}(u)\mathrm{d}u%\right)=\widetilde{\theta}_{t}+\int_{0}^{t}\widetilde{\varphi}(t,u)K(u,u)%\mathrm{d}W_{u},italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT = italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) ( italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u ) = over~ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT over~ start_ARG italic_φ end_ARG ( italic_t , italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ,

where θ~t:=θ+0tφ(tu)A(u)duassignsubscript~𝜃𝑡𝜃superscriptsubscript0𝑡𝜑𝑡𝑢superscript𝐴𝑢differential-d𝑢\displaystyle\widetilde{\theta}_{t}:=\theta+\int_{0}^{t}\varphi(t-u)A^{\prime}%(u)\mathrm{d}uover~ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT := italic_θ + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_uand φ~(t,u):=φ(tu)K(u,u)assign~𝜑𝑡𝑢𝜑𝑡𝑢𝐾𝑢𝑢\displaystyle\widetilde{\varphi}(t,u):=\varphi(t-u)K(u,u)over~ start_ARG italic_φ end_ARG ( italic_t , italic_u ) := italic_φ ( italic_t - italic_u ) italic_K ( italic_u , italic_u ).Ifφ~~𝜑\widetilde{\varphi}over~ start_ARG italic_φ end_ARG satisfies Assumption2.1, then the analysis above still holds.

2.4.1. Comments on the Bond process

Let Rt,T:=tTrsdsassignsubscript𝑅𝑡𝑇superscriptsubscript𝑡𝑇subscript𝑟𝑠differential-d𝑠R_{t,T}:=\int_{t}^{T}r_{s}\mathrm{d}sitalic_R start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s be the integrated short rate processand Bt,T:=eRt,Tassignsubscript𝐵𝑡𝑇superscriptesubscript𝑅𝑡𝑇B_{t,T}:=\mathrm{e}^{-R_{t,T}}italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := roman_e start_POSTSUPERSCRIPT - italic_R start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_POSTSUPERSCRIPT the bond price process on [0,T]0𝑇[0,T][ 0 , italic_T ].

Lemma 2.14.

The process (Bt,T)t[0,T]subscriptsubscript𝐵𝑡𝑇𝑡0𝑇(B_{t,T})_{t\in[0,T]}( italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ∈ [ 0 , italic_T ] end_POSTSUBSCRIPT satisfies BT,T=1subscript𝐵𝑇𝑇1B_{T,T}=1italic_B start_POSTSUBSCRIPT italic_T , italic_T end_POSTSUBSCRIPT = 1 and, for t[0,T)𝑡0𝑇t\in[0,T)italic_t ∈ [ 0 , italic_T ),

dBt,TBt,T=rtdt=(θ(t)+0tφ(tu)A(u)du+0tφ(tu)K(u,u)dWu)dt.dsubscript𝐵𝑡𝑇subscript𝐵𝑡𝑇subscript𝑟𝑡d𝑡𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢superscript𝐴𝑢differential-d𝑢superscriptsubscript0𝑡𝜑𝑡𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢d𝑡\frac{\mathrm{d}B_{t,T}}{B_{t,T}}=r_{t}\mathrm{d}t=\left(\theta(t)+\int_{0}^{t%}\varphi(t-u)A^{\prime}(u)\mathrm{d}u+\int_{0}^{t}\varphi(t-u)K(u,u)\mathrm{d}%W_{u}\right)\mathrm{d}t.divide start_ARG roman_d italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT end_ARG = italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_d italic_t = ( italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ) roman_d italic_t .
Proof.

For any t[0,T)𝑡0𝑇t\in[0,T)italic_t ∈ [ 0 , italic_T ), we can write

rtsubscript𝑟𝑡\displaystyle r_{t}italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT=θ(t)+0tφ(tu)d(0uK(s,s)dWs+A(u))=θ(t)+0tφ(tu)A(u)du+0tφ(tu)K(u,u)dWu.absent𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢dsuperscriptsubscript0𝑢𝐾𝑠𝑠differential-dsubscript𝑊𝑠𝐴𝑢𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢superscript𝐴𝑢differential-d𝑢superscriptsubscript0𝑡𝜑𝑡𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢\displaystyle=\theta(t)+\int_{0}^{t}\varphi(t-u)\mathrm{d}\left(\int_{0}^{u}K(%s,s)\mathrm{d}W_{s}+A(u)\right)=\theta(t)+\int_{0}^{t}\varphi(t-u)A^{\prime}(u%)\mathrm{d}u+\int_{0}^{t}\varphi(t-u)K(u,u)\mathrm{d}W_{u}.= italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) roman_d ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT italic_K ( italic_s , italic_s ) roman_d italic_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_A ( italic_u ) ) = italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT .

and therefore

(2.6)dRt,T=rtdt=(θ(t)+0tφ(tu)A(u)du+0tφ(tu)K(u,u)dWu)dt.dsubscript𝑅𝑡𝑇subscript𝑟𝑡d𝑡𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢superscript𝐴𝑢differential-d𝑢superscriptsubscript0𝑡𝜑𝑡𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢d𝑡\mathrm{d}R_{t,T}=-r_{t}\mathrm{d}t=-\left(\theta(t)+\int_{0}^{t}\varphi(t-u)A%^{\prime}(u)\mathrm{d}u+\int_{0}^{t}\varphi(t-u)K(u,u)\mathrm{d}W_{u}\right)%\mathrm{d}t.roman_d italic_R start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = - italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_d italic_t = - ( italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ) roman_d italic_t .

Itô’s formula[1, Theorem 4] then yields

BT,Tsubscript𝐵𝑇𝑇\displaystyle B_{T,T}italic_B start_POSTSUBSCRIPT italic_T , italic_T end_POSTSUBSCRIPT=Bt,TtTBs,TdRs,T+12tTBs,TdR,Rs,Tabsentsubscript𝐵𝑡𝑇superscriptsubscript𝑡𝑇subscript𝐵𝑠𝑇differential-dsubscript𝑅𝑠𝑇12superscriptsubscript𝑡𝑇subscript𝐵𝑠𝑇dsubscript𝑅𝑅𝑠𝑇\displaystyle=B_{t,T}-\int_{t}^{T}B_{s,T}\mathrm{d}R_{s,T}+\frac{1}{2}\int_{t}%^{T}B_{s,T}\mathrm{d}\langle R,R\rangle_{s,T}= italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_s , italic_T end_POSTSUBSCRIPT roman_d italic_R start_POSTSUBSCRIPT italic_s , italic_T end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_s , italic_T end_POSTSUBSCRIPT roman_d ⟨ italic_R , italic_R ⟩ start_POSTSUBSCRIPT italic_s , italic_T end_POSTSUBSCRIPT
=Bt,T+tTBs,T{(θ(s)+0sφ(s,u)A(u)du)+0sφ(s,u)K(u,u)dWu}ds.absentsubscript𝐵𝑡𝑇superscriptsubscript𝑡𝑇subscript𝐵𝑠𝑇𝜃𝑠superscriptsubscript0𝑠𝜑𝑠𝑢superscript𝐴𝑢differential-d𝑢superscriptsubscript0𝑠𝜑𝑠𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢differential-d𝑠\displaystyle=B_{t,T}+\int_{t}^{T}B_{s,T}\left\{\left(\theta(s)+\int_{0}^{s}%\varphi(s,u)A^{\prime}(u)\mathrm{d}u\right)+\int_{0}^{s}\varphi(s,u)K(u,u)%\mathrm{d}W_{u}\right\}\mathrm{d}s.= italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_s , italic_T end_POSTSUBSCRIPT { ( italic_θ ( italic_s ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT } roman_d italic_s .

so that, since BT,T=1subscript𝐵𝑇𝑇1B_{T,T}=1italic_B start_POSTSUBSCRIPT italic_T , italic_T end_POSTSUBSCRIPT = 1,the lemma follows from

dBt,Tdsubscript𝐵𝑡𝑇\displaystyle\mathrm{d}B_{t,T}roman_d italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT=d(tTBs,T{(θ(s)+0sφ(s,u)A(u)du)+0sφ(s,u)K(u,u)dWu}ds)absentdsuperscriptsubscript𝑡𝑇subscript𝐵𝑠𝑇𝜃𝑠superscriptsubscript0𝑠𝜑𝑠𝑢superscript𝐴𝑢differential-d𝑢superscriptsubscript0𝑠𝜑𝑠𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢differential-d𝑠\displaystyle=-\mathrm{d}\left(\int_{t}^{T}B_{s,T}\left\{\left(\theta(s)+\int_%{0}^{s}\varphi(s,u)A^{\prime}(u)\mathrm{d}u\right)+\int_{0}^{s}\varphi(s,u)K(u%,u)\mathrm{d}W_{u}\right\}\mathrm{d}s\right)= - roman_d ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_s , italic_T end_POSTSUBSCRIPT { ( italic_θ ( italic_s ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT } roman_d italic_s )
=Bt,T{(θ(t)+0tφ(tu)A(u)du)+0tφ(tu)K(u,u)dWu}dt.absentsubscript𝐵𝑡𝑇𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢superscript𝐴𝑢differential-d𝑢superscriptsubscript0𝑡𝜑𝑡𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢d𝑡\displaystyle=B_{t,T}\left\{\left(\theta(t)+\int_{0}^{t}\varphi(t-u)A^{\prime}%(u)\mathrm{d}u\right)+\int_{0}^{t}\varphi(t-u)K(u,u)\mathrm{d}W_{u}\right\}%\mathrm{d}t.= italic_B start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT { ( italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT } roman_d italic_t .

Remark 2.15.

We can also writeRt,Tsubscript𝑅𝑡𝑇R_{t,T}italic_R start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT in integral form as follows, using stochastic Fubini:

Rt,Tsubscript𝑅𝑡𝑇\displaystyle R_{t,T}italic_R start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT=tT[θ(s)+0sφ(s,u)A(u)du+0sφ(s,u)K(u,u)dWu]dsabsentsuperscriptsubscript𝑡𝑇delimited-[]𝜃𝑠superscriptsubscript0𝑠𝜑𝑠𝑢superscript𝐴𝑢differential-d𝑢superscriptsubscript0𝑠𝜑𝑠𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢differential-d𝑠\displaystyle=\int_{t}^{T}\left[\theta(s)+\int_{0}^{s}\varphi(s,u)A^{\prime}(u%)\mathrm{d}u+\int_{0}^{s}\varphi(s,u)K(u,u)\mathrm{d}W_{u}\right]\mathrm{d}s= ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT [ italic_θ ( italic_s ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ] roman_d italic_s
=Θt,T+tT(0sφ(s,u)A(u)du)ds+tT(0sφ(s,u)K(u,u)dWu)dsabsentsubscriptΘ𝑡𝑇superscriptsubscript𝑡𝑇superscriptsubscript0𝑠𝜑𝑠𝑢superscript𝐴𝑢differential-d𝑢differential-d𝑠superscriptsubscript𝑡𝑇superscriptsubscript0𝑠𝜑𝑠𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢differential-d𝑠\displaystyle=\Theta_{t,T}+\int_{t}^{T}\left(\int_{0}^{s}\varphi(s,u)A^{\prime%}(u)\mathrm{d}u\right)\mathrm{d}s+\int_{t}^{T}\left(\int_{0}^{s}\varphi(s,u)K(%u,u)\mathrm{d}W_{u}\right)\mathrm{d}s= roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u ) roman_d italic_s + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ) roman_d italic_s
=Θt,T+0t(tTφ(s,u)ds)A(u)du+0t(tTφ(s,u)ds)K(u,u)dWuabsentsubscriptΘ𝑡𝑇superscriptsubscript0𝑡superscriptsubscript𝑡𝑇𝜑𝑠𝑢differential-d𝑠superscript𝐴𝑢differential-d𝑢superscriptsubscript0𝑡superscriptsubscript𝑡𝑇𝜑𝑠𝑢differential-d𝑠𝐾𝑢𝑢differential-dsubscript𝑊𝑢\displaystyle=\Theta_{t,T}+\int_{0}^{t}\left(\int_{t}^{T}\varphi(s,u)\mathrm{d%}s\right)A^{\prime}(u)\mathrm{d}u+\int_{0}^{t}\left(\int_{t}^{T}\varphi(s,u)%\mathrm{d}s\right)K(u,u)\mathrm{d}W_{u}= roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT
+tT(uTφ(s,u)ds)A(u)du+tT(uTφ(s,u)ds)K(u,u)dWusuperscriptsubscript𝑡𝑇superscriptsubscript𝑢𝑇𝜑𝑠𝑢differential-d𝑠superscript𝐴𝑢differential-d𝑢superscriptsubscript𝑡𝑇superscriptsubscript𝑢𝑇𝜑𝑠𝑢differential-d𝑠𝐾𝑢𝑢differential-dsubscript𝑊𝑢\displaystyle\qquad\quad+\int_{t}^{T}\left(\int_{u}^{T}\varphi(s,u)\mathrm{d}s%\right)A^{\prime}(u)\mathrm{d}u+\int_{t}^{T}\left(\int_{u}^{T}\varphi(s,u)%\mathrm{d}s\right)K(u,u)\mathrm{d}W_{u}+ ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT
=Θt,T+0tΦt(u)A(u)du+0tΦtK(u)dWu+tTΦu(u)A(u)du+tTΦuK(u)dWu,absentsubscriptΘ𝑡𝑇superscriptsubscript0𝑡subscriptΦ𝑡𝑢superscript𝐴𝑢differential-d𝑢superscriptsubscript0𝑡subscriptsuperscriptΦ𝐾𝑡𝑢differential-dsubscript𝑊𝑢superscriptsubscript𝑡𝑇subscriptΦ𝑢𝑢superscript𝐴𝑢differential-d𝑢superscriptsubscript𝑡𝑇subscriptsuperscriptΦ𝐾𝑢𝑢differential-dsubscript𝑊𝑢\displaystyle=\Theta_{t,T}+\int_{0}^{t}\Phi_{t}(u)A^{\prime}(u)\mathrm{d}u+%\int_{0}^{t}\Phi^{K}_{t}(u)\mathrm{d}W_{u}+\int_{t}^{T}\Phi_{u}(u)A^{\prime}(u%)\mathrm{d}u+\int_{t}^{T}\Phi^{K}_{u}(u)\mathrm{d}W_{u},= roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_Φ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ,

withΦt(u):=tTφ(s,u)dsassignsubscriptΦ𝑡𝑢superscriptsubscript𝑡𝑇𝜑𝑠𝑢differential-d𝑠\Phi_{t}(u):=\displaystyle\int_{t}^{T}\varphi(s,u)\mathrm{d}sroman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) := ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s , italic_u ) roman_d italic_s andΦtK(u):=Φt(u)K(u,u)assignsubscriptsuperscriptΦ𝐾𝑡𝑢subscriptΦ𝑡𝑢𝐾𝑢𝑢\Phi^{K}_{t}(u):=\Phi_{t}(u)K(u,u)roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) := roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) italic_K ( italic_u , italic_u ).As a consistency check, we have

dRt,Tdsubscript𝑅𝑡𝑇\displaystyle\mathrm{d}R_{t,T}roman_d italic_R start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT=θ(t)dt+Φt(t)A(t)dt+ΦtK(t)dWtΦt(t)A(t)dtΦtK(t)dWt+0ttΦt(u)A(u)dudt+0ttΦtK(u)dWudtabsent𝜃𝑡d𝑡subscriptΦ𝑡𝑡superscript𝐴𝑡d𝑡subscriptsuperscriptΦ𝐾𝑡𝑡dsubscript𝑊𝑡subscriptΦ𝑡𝑡superscript𝐴𝑡d𝑡subscriptsuperscriptΦ𝐾𝑡𝑡dsubscript𝑊𝑡superscriptsubscript0𝑡subscript𝑡subscriptΦ𝑡𝑢superscript𝐴𝑢d𝑢d𝑡superscriptsubscript0𝑡subscript𝑡subscriptsuperscriptΦ𝐾𝑡𝑢dsubscript𝑊𝑢d𝑡\displaystyle=-\theta(t)\mathrm{d}t+\Phi_{t}(t)A^{\prime}(t)\mathrm{d}t+\Phi^{%K}_{t}(t)\mathrm{d}W_{t}-\Phi_{t}(t)A^{\prime}(t)\mathrm{d}t-\Phi^{K}_{t}(t)%\mathrm{d}W_{t}+\int_{0}^{t}\partial_{t}\Phi_{t}(u)A^{\prime}(u)\mathrm{d}u%\mathrm{d}t+\int_{0}^{t}\partial_{t}\Phi^{K}_{t}(u)\mathrm{d}W_{u}\mathrm{d}t= - italic_θ ( italic_t ) roman_d italic_t + roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) roman_d italic_t + roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) roman_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) roman_d italic_t - roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) roman_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u roman_d italic_t + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_t
=(θ(t)+Φt(t)A(t)Φt(t)A(t)+0ttΦt(u)A(u)du+0ttΦtK(u)dWu)dt+(ΦtK(t)ΦtK(t))dWtabsent𝜃𝑡subscriptΦ𝑡𝑡superscript𝐴𝑡subscriptΦ𝑡𝑡superscript𝐴𝑡superscriptsubscript0𝑡subscript𝑡subscriptΦ𝑡𝑢superscript𝐴𝑢d𝑢superscriptsubscript0𝑡subscript𝑡subscriptsuperscriptΦ𝐾𝑡𝑢dsubscript𝑊𝑢d𝑡subscriptsuperscriptΦ𝐾𝑡𝑡subscriptsuperscriptΦ𝐾𝑡𝑡dsubscript𝑊𝑡\displaystyle=\left(-\theta(t)+\Phi_{t}(t)A^{\prime}(t)-\Phi_{t}(t)A^{\prime}(%t)+\int_{0}^{t}\partial_{t}\Phi_{t}(u)A^{\prime}(u)\mathrm{d}u+\int_{0}^{t}%\partial_{t}\Phi^{K}_{t}(u)\mathrm{d}W_{u}\right)\mathrm{d}t+\left(\Phi^{K}_{t%}(t)-\Phi^{K}_{t}(t)\right)\mathrm{d}W_{t}= ( - italic_θ ( italic_t ) + roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) - roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ) roman_d italic_t + ( roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) - roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) ) roman_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT
=(θ(t)+Φt(t)A(t)Φt(t)A(t)+0ttΦt(u)A(u)du)dt+0ttΦtK(u)dWudtabsent𝜃𝑡subscriptΦ𝑡𝑡superscript𝐴𝑡subscriptΦ𝑡𝑡superscript𝐴𝑡superscriptsubscript0𝑡subscript𝑡subscriptΦ𝑡𝑢superscript𝐴𝑢d𝑢d𝑡superscriptsubscript0𝑡subscript𝑡subscriptsuperscriptΦ𝐾𝑡𝑢dsubscript𝑊𝑢d𝑡\displaystyle=\left(-\theta(t)+\Phi_{t}(t)A^{\prime}(t)-\Phi_{t}(t)A^{\prime}(%t)+\int_{0}^{t}\partial_{t}\Phi_{t}(u)A^{\prime}(u)\mathrm{d}u\right)\mathrm{d%}t+\int_{0}^{t}\partial_{t}\Phi^{K}_{t}(u)\mathrm{d}W_{u}\mathrm{d}t= ( - italic_θ ( italic_t ) + roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) - roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_t ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u ) roman_d italic_t + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_t
=(θ(t)+0ttΦt(u)A(u)du)dt+0ttΦtK(u)dWudtabsent𝜃𝑡superscriptsubscript0𝑡subscript𝑡subscriptΦ𝑡𝑢superscript𝐴𝑢d𝑢d𝑡superscriptsubscript0𝑡subscript𝑡subscriptsuperscriptΦ𝐾𝑡𝑢dsubscript𝑊𝑢d𝑡\displaystyle=\left(-\theta(t)+\int_{0}^{t}\partial_{t}\Phi_{t}(u)A^{\prime}(u%)\mathrm{d}u\right)\mathrm{d}t+\int_{0}^{t}\partial_{t}\Phi^{K}_{t}(u)\mathrm{%d}W_{u}\mathrm{d}t= ( - italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u ) roman_d italic_t + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Φ start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_t
=(θ(t)+0tφ(tu)A(u)du)dt0tφ(tu)K(u,u)dWudt,absent𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢superscript𝐴𝑢differential-d𝑢d𝑡superscriptsubscript0𝑡𝜑𝑡𝑢𝐾𝑢𝑢differential-dsubscript𝑊𝑢differential-d𝑡\displaystyle=-\left(\theta(t)+\int_{0}^{t}\varphi(t-u)A^{\prime}(u)\mathrm{d}%u\right)\mathrm{d}t-\int_{0}^{t}\varphi(t-u)K(u,u)\mathrm{d}W_{u}\mathrm{d}t,= - ( italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) roman_d italic_u ) roman_d italic_t - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) italic_K ( italic_u , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_t ,

which corresponds precisely to(2.6).

2.4.2. Specific example

Consider the kernelK(t,s)=eβ(ts)𝐾𝑡𝑠superscripte𝛽𝑡𝑠K(t,s)=\mathrm{e}^{-\beta(t-s)}italic_K ( italic_t , italic_s ) = roman_e start_POSTSUPERSCRIPT - italic_β ( italic_t - italic_s ) end_POSTSUPERSCRIPT with β>0𝛽0\beta>0italic_β > 0,so that K(t,t)=1𝐾𝑡𝑡1K(t,t)=1italic_K ( italic_t , italic_t ) = 1 and tK(t,s)=βK(t,s)subscript𝑡𝐾𝑡𝑠𝛽𝐾𝑡𝑠\partial_{t}K(t,s)=-\beta K(t,s)∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_K ( italic_t , italic_s ) = - italic_β italic_K ( italic_t , italic_s ).In this case,A(t)=0ttK(t,s)dWs=β𝔚tsuperscript𝐴𝑡superscriptsubscript0𝑡subscript𝑡𝐾𝑡𝑠dsubscript𝑊𝑠𝛽subscript𝔚𝑡A^{\prime}(t)=\int_{0}^{t}\partial_{t}K(t,s)\mathrm{d}W_{s}=-\beta\mathfrak{W}%_{t}italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_K ( italic_t , italic_s ) roman_d italic_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = - italic_β fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT,so thatd𝔚t=dWtβ𝔚tdtdsubscript𝔚𝑡dsubscript𝑊𝑡𝛽subscript𝔚𝑡d𝑡\mathrm{d}\mathfrak{W}_{t}=\mathrm{d}W_{t}-\beta\mathfrak{W}_{t}\mathrm{d}troman_d fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = roman_d italic_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_β fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_d italic_t,which is an Ornstein-Uhlenbeck process,with covariance, for all s,t0𝑠𝑡0s,t\geq 0italic_s , italic_t ≥ 0,

𝔼[𝔚s𝔚t]=𝔼[0sK(s,u)dWu0tK(t,u)dWu]=0sK(s,u)K(t,u)du=eβ|ts|eβ(s+t)2β.𝔼delimited-[]subscript𝔚𝑠subscript𝔚𝑡𝔼delimited-[]superscriptsubscript0𝑠𝐾𝑠𝑢differential-dsubscript𝑊𝑢superscriptsubscript0𝑡𝐾𝑡𝑢differential-dsubscript𝑊𝑢superscriptsubscript0𝑠𝐾𝑠𝑢𝐾𝑡𝑢differential-d𝑢superscripte𝛽𝑡𝑠superscripte𝛽𝑠𝑡2𝛽\mathbb{E}[\mathfrak{W}_{s}\mathfrak{W}_{t}]=\mathbb{E}\left[\int_{0}^{s}K(s,u%)\mathrm{d}W_{u}\cdot\int_{0}^{t}K(t,u)\mathrm{d}W_{u}\right]=\int_{0}^{s}K(s,%u)K(t,u)\mathrm{d}u=\frac{\mathrm{e}^{-\beta|t-s|}-\mathrm{e}^{-\beta(s+t)}}{2%\beta}.blackboard_E [ fraktur_W start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT fraktur_W start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ] = blackboard_E [ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_K ( italic_s , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ⋅ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_K ( italic_t , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ] = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_K ( italic_s , italic_u ) italic_K ( italic_t , italic_u ) roman_d italic_u = divide start_ARG roman_e start_POSTSUPERSCRIPT - italic_β | italic_t - italic_s | end_POSTSUPERSCRIPT - roman_e start_POSTSUPERSCRIPT - italic_β ( italic_s + italic_t ) end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_β end_ARG .

The short rate dynamics in(1.1) then reads

rt=θ(t)+0tφ(t,u)d𝔚u=θ(t)+0tφ(t,u)(dWuβ𝔚udu)=θ~(t)+0tφ(t,u)dWu,subscript𝑟𝑡𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢differential-dsubscript𝔚𝑢𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢dsubscript𝑊𝑢𝛽subscript𝔚𝑢d𝑢~𝜃𝑡superscriptsubscript0𝑡𝜑𝑡𝑢differential-dsubscript𝑊𝑢r_{t}=\theta(t)+\int_{0}^{t}\varphi(t,u)\mathrm{d}\mathfrak{W}_{u}=\theta(t)+%\int_{0}^{t}\varphi(t,u)\Big{(}\mathrm{d}W_{u}-\beta\mathfrak{W}_{u}\mathrm{d}%u\Big{)}=\widetilde{\theta}(t)+\int_{0}^{t}\varphi(t,u)\mathrm{d}W_{u},italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t , italic_u ) roman_d fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT = italic_θ ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t , italic_u ) ( roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT - italic_β fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_u ) = over~ start_ARG italic_θ end_ARG ( italic_t ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ,

withθ~(t)=θ(t)β0tφ(tu)𝔚udu~𝜃𝑡𝜃𝑡𝛽superscriptsubscript0𝑡𝜑𝑡𝑢subscript𝔚𝑢differential-d𝑢\widetilde{\theta}(t)=\theta(t)-\beta\int_{0}^{t}\varphi(t-u)\mathfrak{W}_{u}%\mathrm{d}uover~ start_ARG italic_θ end_ARG ( italic_t ) = italic_θ ( italic_t ) - italic_β ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_φ ( italic_t - italic_u ) fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_u,and the zero-coupon bond dynamics(Proposition2.4) reads

Pt,T=exp{Θ~t,T+12tTΞT(u)2du+0tΞT(t,u)dWu},subscript𝑃𝑡𝑇subscript~Θ𝑡𝑇12superscriptsubscript𝑡𝑇subscriptΞ𝑇superscript𝑢2differential-d𝑢superscriptsubscript0𝑡subscriptΞ𝑇𝑡𝑢differential-dsubscript𝑊𝑢P_{t,T}=\exp\left\{-\widetilde{\Theta}_{t,T}+\frac{1}{2}\int_{t}^{T}\Xi_{T}(u)%^{2}\mathrm{d}u+\int_{0}^{t}\Xi_{T}(t,u)\mathrm{d}W_{u}\right\},italic_P start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = roman_exp { - over~ start_ARG roman_Θ end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , italic_u ) roman_d italic_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT } ,

with

Θ~t,T:=tTθ~sds=tT(θ(s)β0sφ(su)𝔚udu)ds=Θt,TβtT0sφ(su)𝔚ududs.assignsubscript~Θ𝑡𝑇superscriptsubscript𝑡𝑇subscript~𝜃𝑠differential-d𝑠superscriptsubscript𝑡𝑇𝜃𝑠𝛽superscriptsubscript0𝑠𝜑𝑠𝑢subscript𝔚𝑢differential-d𝑢differential-d𝑠subscriptΘ𝑡𝑇𝛽superscriptsubscript𝑡𝑇superscriptsubscript0𝑠𝜑𝑠𝑢subscript𝔚𝑢differential-d𝑢differential-d𝑠\widetilde{\Theta}_{t,T}:=\int_{t}^{T}\widetilde{\theta}_{s}\mathrm{d}s=\int_{%t}^{T}\Big{(}\theta(s)-\beta\int_{0}^{s}\varphi(s-u)\mathfrak{W}_{u}\mathrm{d}%u\Big{)}\mathrm{d}s=\Theta_{t,T}-\beta\int_{t}^{T}\int_{0}^{s}\varphi(s-u)%\mathfrak{W}_{u}\mathrm{d}u\,\mathrm{d}s.over~ start_ARG roman_Θ end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT := ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT over~ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_d italic_s = ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( italic_θ ( italic_s ) - italic_β ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s - italic_u ) fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_u ) roman_d italic_s = roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT - italic_β ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_φ ( italic_s - italic_u ) fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_u roman_d italic_s .

Applying stochastic Fubini, we then obtain

Θ~t,T=Θt,Tβ0Tt+u(1t/T)Tφ(su)ds𝔚udu=Θt,Tβ0T(Φ(Tu)Φ(ttT))𝔚udu.subscript~Θ𝑡𝑇subscriptΘ𝑡𝑇𝛽superscriptsubscript0𝑇superscriptsubscript𝑡𝑢1𝑡𝑇𝑇𝜑𝑠𝑢differential-d𝑠subscript𝔚𝑢differential-d𝑢subscriptΘ𝑡𝑇𝛽superscriptsubscript0𝑇Φ𝑇𝑢Φ𝑡𝑡𝑇subscript𝔚𝑢differential-d𝑢\widetilde{\Theta}_{t,T}=\Theta_{t,T}-\beta\int_{0}^{T}\int_{t+u(1-t/T)}^{T}%\varphi(s-u)\mathrm{d}s\,\mathfrak{W}_{u}\mathrm{d}u=\Theta_{t,T}-\beta\int_{0%}^{T}\left(\Phi(T-u)-\Phi\left(t-\frac{t}{T}\right)\right)\mathfrak{W}_{u}%\mathrm{d}u.over~ start_ARG roman_Θ end_ARG start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT = roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT - italic_β ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_t + italic_u ( 1 - italic_t / italic_T ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_φ ( italic_s - italic_u ) roman_d italic_s fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_u = roman_Θ start_POSTSUBSCRIPT italic_t , italic_T end_POSTSUBSCRIPT - italic_β ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( roman_Φ ( italic_T - italic_u ) - roman_Φ ( italic_t - divide start_ARG italic_t end_ARG start_ARG italic_T end_ARG ) ) fraktur_W start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT roman_d italic_u .

We note that the convexity adjustment in Proposition2.11 is only affected by a different weighting scheme in the integral given by the functionγ𝔚subscriptsuperscript𝛾𝔚\gamma^{\prime}_{\mathfrak{W}}italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT.In our case, from the covariance computation above,γ𝔚(t)=12β(1e2βt)subscript𝛾𝔚𝑡12𝛽1superscripte2𝛽𝑡\gamma_{\mathfrak{W}}(t)=\frac{1}{2\beta}(1-\mathrm{e}^{-2\beta t})italic_γ start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG 1 end_ARG start_ARG 2 italic_β end_ARG ( 1 - roman_e start_POSTSUPERSCRIPT - 2 italic_β italic_t end_POSTSUPERSCRIPT ),and thereforeγ𝔚(t)=e2βtsubscriptsuperscript𝛾𝔚𝑡superscripte2𝛽𝑡\gamma^{\prime}_{\mathfrak{W}}(t)=\mathrm{e}^{-2\beta t}italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT fraktur_W end_POSTSUBSCRIPT ( italic_t ) = roman_e start_POSTSUPERSCRIPT - 2 italic_β italic_t end_POSTSUPERSCRIPT.

3. Pricing OIS products and options

3.1. Simple compounded rate

Using Proposition2.4, we can compute several OIS products and optionsConsider the simple compounded rate

(3.1)rS(t0,T):=1𝔇(t0,T)(i=0n11Pti,ti+11),assignsuperscript𝑟𝑆subscript𝑡0𝑇1𝔇subscript𝑡0𝑇superscriptsubscriptproduct𝑖0𝑛11subscript𝑃subscript𝑡𝑖subscript𝑡𝑖11r^{S}(t_{0},T):=\frac{1}{\mathfrak{D}(t_{0},T)}\left(\prod_{i=0}^{n-1}\frac{1}%{P_{t_{i},t_{i+1}}}-1\right),italic_r start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_T ) := divide start_ARG 1 end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_T ) end_ARG ( ∏ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG - 1 ) ,

where𝔇(t0,T)𝔇subscript𝑡0𝑇\mathfrak{D}(t_{0},T)fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_T ) is the day count fraction and n𝑛nitalic_n the number of business days in the period[t0,tn]subscript𝑡0subscript𝑡𝑛[t_{0},t_{n}][ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ].The following then holds directly:

rS(t0R,T)=1𝔇(t0,T)(i=0n1exp{ΘtiR,ti+1R12tiRti+1RΞ(u,u)2du(Ξ(tiR,)𝔚)tiR}1),superscript𝑟𝑆superscriptsubscript𝑡0𝑅𝑇1𝔇subscript𝑡0𝑇superscriptsubscriptproduct𝑖0𝑛1subscriptΘsuperscriptsubscript𝑡𝑖𝑅superscriptsubscript𝑡𝑖1𝑅12superscriptsubscriptsuperscriptsubscript𝑡𝑖𝑅superscriptsubscript𝑡𝑖1𝑅Ξsuperscript𝑢𝑢2differential-d𝑢subscriptΞsuperscriptsubscript𝑡𝑖𝑅𝔚superscriptsubscript𝑡𝑖𝑅1r^{S}(t_{0}^{R},T)=\frac{1}{\mathfrak{D}(t_{0},T)}\left(\prod_{i=0}^{n-1}\exp%\left\{\Theta_{t_{i}^{R},t_{i+1}^{R}}-\frac{1}{2}\int_{t_{i}^{R}}^{t_{i+1}^{R}%}\Xi(u,u)^{2}\mathrm{d}u-\left(\Xi(t_{i}^{R},\cdot)\circ\mathfrak{W}\right)_{t%_{i}^{R}}\right\}-1\right),italic_r start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_T ) = divide start_ARG 1 end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_T ) end_ARG ( ∏ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT roman_exp { roman_Θ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT roman_Ξ ( italic_u , italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_u - ( roman_Ξ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , ⋅ ) ∘ fraktur_W ) start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT } - 1 ) ,

where the superscriptR𝑅{}^{R}start_FLOATSUPERSCRIPT italic_R end_FLOATSUPERSCRIPT refers to reset dates;we use the superscriptA𝐴{}^{A}start_FLOATSUPERSCRIPT italic_A end_FLOATSUPERSCRIPT to refer to accrual dates below.

3.2. Compounded rate cashflows with payment delay

The present value at time zero of a compounded rate cashflow is given by

PVflowsubscriptPVflow\displaystyle\mathrm{PV}_{\mathrm{flow}}roman_PV start_POSTSUBSCRIPT roman_flow end_POSTSUBSCRIPT=P0,Tp𝔇(t0A,tnA)𝔼Tp[rS]absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴superscript𝔼superscriptsubscript𝑇𝑝delimited-[]superscript𝑟𝑆\displaystyle=P_{0,T_{p}}\mathfrak{D}(t_{0}^{A},t_{n}^{A})\mathbb{E}^{\mathbb{%Q}^{T_{p}}}\left[r^{S}\right]= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ italic_r start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ]
=P0,Tp𝔇(t0A,tnA)𝔼Tp[1𝔇(t0A,tnA){i=0n1(1+𝔇(tiA,ti+1A)𝔇(tiR,ti+1R)(Pt,tiRPt,ti+1R1))1}],absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴superscript𝔼superscriptsubscript𝑇𝑝delimited-[]1𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴superscriptsubscriptproduct𝑖0𝑛11𝔇superscriptsubscript𝑡𝑖𝐴superscriptsubscript𝑡𝑖1𝐴𝔇superscriptsubscript𝑡𝑖𝑅superscriptsubscript𝑡𝑖1𝑅subscript𝑃𝑡superscriptsubscript𝑡𝑖𝑅subscript𝑃𝑡superscriptsubscript𝑡𝑖1𝑅11\displaystyle=P_{0,T_{p}}\mathfrak{D}(t_{0}^{A},t_{n}^{A})\mathbb{E}^{\mathbb{%Q}^{T_{p}}}\left[\frac{1}{\mathfrak{D}(t_{0}^{A},t_{n}^{A})}\left\{\prod_{i=0}%^{n-1}\left(1+\frac{\mathfrak{D}(t_{i}^{A},t_{i+1}^{A})}{\mathfrak{D}(t_{i}^{R%},t_{i+1}^{R})}\left(\frac{P_{t,t_{i}^{R}}}{P_{t,t_{i+1}^{R}}}-1\right)\right)%-1\right\}\right],= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ divide start_ARG 1 end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) end_ARG { ∏ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( 1 + divide start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG ( divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_t start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG - 1 ) ) - 1 } ] ,

where rSsuperscript𝑟𝑆r^{S}italic_r start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT denotes the compounded RFR rate.In the case where there is no reset delays, namely tiR=tiAsuperscriptsubscript𝑡𝑖𝑅superscriptsubscript𝑡𝑖𝐴t_{i}^{R}=t_{i}^{A}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT = italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT for all i=0,,n𝑖0𝑛i=0,\ldots,nitalic_i = 0 , … , italic_n, then

PVflow=P0,Tp𝔼Tp[i=0n1(Pt,tiRPt,ti+1R)1]subscriptPVflowsubscript𝑃0subscript𝑇𝑝superscript𝔼superscriptsubscript𝑇𝑝delimited-[]superscriptsubscriptproduct𝑖0𝑛1subscript𝑃𝑡superscriptsubscript𝑡𝑖𝑅subscript𝑃𝑡superscriptsubscript𝑡𝑖1𝑅1\displaystyle\mathrm{PV}_{\mathrm{flow}}=P_{0,T_{p}}\mathbb{E}^{\mathbb{Q}^{T_%{p}}}\left[\prod_{i=0}^{n-1}\left(\frac{P_{t,t_{i}^{R}}}{P_{t,t_{i+1}^{R}}}%\right)-1\right]roman_PV start_POSTSUBSCRIPT roman_flow end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_t start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) - 1 ]=P0,Tp𝔼Tp[Pt,t0RPt,tnR1]absentsubscript𝑃0subscript𝑇𝑝superscript𝔼superscriptsubscript𝑇𝑝delimited-[]subscript𝑃𝑡superscriptsubscript𝑡0𝑅subscript𝑃𝑡superscriptsubscript𝑡𝑛𝑅1\displaystyle=P_{0,T_{p}}\mathbb{E}^{\mathbb{Q}^{T_{p}}}\left[\frac{P_{t,t_{0}%^{R}}}{P_{t,t_{n}^{R}}}-1\right]= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG - 1 ]
=P0,Tp(P0,t0RP0,tnRtTp(t0R,tnR)1)absentsubscript𝑃0subscript𝑇𝑝subscript𝑃0superscriptsubscript𝑡0𝑅subscript𝑃0superscriptsubscript𝑡𝑛𝑅superscriptsubscript𝑡subscript𝑇𝑝superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅1\displaystyle=P_{0,T_{p}}\left(\frac{P_{0,t_{0}^{R}}}{P_{0,t_{n}^{R}}}%\mathfrak{C}_{t}^{T_{p}}(t_{0}^{R},t_{n}^{R})-1\right)= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) - 1 )
=P0,Tp(P0,TRSP0,TREtTp(TRS,TRE)1),absentsubscript𝑃0subscript𝑇𝑝subscript𝑃0subscript𝑇𝑅𝑆subscript𝑃0subscript𝑇𝑅𝐸superscriptsubscript𝑡subscript𝑇𝑝subscript𝑇𝑅𝑆subscript𝑇𝑅𝐸1\displaystyle=P_{0,T_{p}}\left(\frac{P_{0,T_{RS}}}{P_{0,T_{RE}}}\mathfrak{C}_{%t}^{T_{p}}(T_{RS},T_{RE})-1\right),= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT ) - 1 ) ,

where t0R=TRSsuperscriptsubscript𝑡0𝑅subscript𝑇𝑅𝑆t_{0}^{R}=T_{RS}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT = italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT and tnR=TREsuperscriptsubscript𝑡𝑛𝑅subscript𝑇𝑅𝐸t_{n}^{R}=T_{RE}italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT = italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT,using the convexity adjustment formula given in Proposition2.11.

3.3. Compounded rate cashflows with reset delay

Assuming now that tiRtiAsuperscriptsubscript𝑡𝑖𝑅superscriptsubscript𝑡𝑖𝐴t_{i}^{R}\neq t_{i}^{A}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ≠ italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT, we can writertS=r~tS+rtS,adjsubscriptsuperscript𝑟𝑆𝑡superscriptsubscript~𝑟𝑡𝑆superscriptsubscript𝑟𝑡𝑆𝑎𝑑𝑗r^{S}_{t}=\widetilde{r}_{t}^{S}+r_{t}^{S,adj}italic_r start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT + italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S , italic_a italic_d italic_j end_POSTSUPERSCRIPT,from(3.1),where

r~tS:=1𝔇(t0R,tnR)(Pt,TRSPt,TRE1),assignsubscriptsuperscript~𝑟𝑆𝑡1𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅subscript𝑃𝑡subscript𝑇𝑅𝑆subscript𝑃𝑡subscript𝑇𝑅𝐸1\widetilde{r}^{S}_{t}:=\frac{1}{\mathfrak{D}(t_{0}^{R},t_{n}^{R})}\left(\frac{%P_{t,T_{RS}}}{P_{t,T_{RE}}}-1\right),over~ start_ARG italic_r end_ARG start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT := divide start_ARG 1 end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG ( divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG - 1 ) ,

and rtS,adjsubscriptsuperscript𝑟𝑆𝑎𝑑𝑗𝑡r^{S,adj}_{t}italic_r start_POSTSUPERSCRIPT italic_S , italic_a italic_d italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is implied from the decomposition above.Therefore

PVflowsubscriptPVflow\displaystyle\mathrm{PV}_{\mathrm{flow}}roman_PV start_POSTSUBSCRIPT roman_flow end_POSTSUBSCRIPT=P0,Tp𝔇(t0A,tnA)𝔼Tp[rtS]absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴superscript𝔼superscriptsubscript𝑇𝑝delimited-[]subscriptsuperscript𝑟𝑆𝑡\displaystyle=P_{0,T_{p}}\mathfrak{D}(t_{0}^{A},t_{n}^{A})\mathbb{E}^{\mathbb{%Q}^{T_{p}}}\left[r^{S}_{t}\right]= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ italic_r start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ]
=P0,Tp𝔇(t0A,tnA)𝔼Tp[r~tS+rtS,adj]absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴superscript𝔼superscriptsubscript𝑇𝑝delimited-[]superscriptsubscript~𝑟𝑡𝑆superscriptsubscript𝑟𝑡𝑆𝑎𝑑𝑗\displaystyle=P_{0,T_{p}}\mathfrak{D}(t_{0}^{A},t_{n}^{A})\mathbb{E}^{\mathbb{%Q}^{T_{p}}}\left[\widetilde{r}_{t}^{S}+r_{t}^{S,adj}\right]= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT + italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S , italic_a italic_d italic_j end_POSTSUPERSCRIPT ]
=P0,Tp𝔇(t0A,tnA)𝔼Tp[1𝔇(t0R,tnR)(Pt,TRSPt,TRE1)+rtS,adj]absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴superscript𝔼superscriptsubscript𝑇𝑝delimited-[]1𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅subscript𝑃𝑡subscript𝑇𝑅𝑆subscript𝑃𝑡subscript𝑇𝑅𝐸1superscriptsubscript𝑟𝑡𝑆𝑎𝑑𝑗\displaystyle=P_{0,T_{p}}\mathfrak{D}(t_{0}^{A},t_{n}^{A})\mathbb{E}^{\mathbb{%Q}^{T_{p}}}\left[\frac{1}{\mathfrak{D}(t_{0}^{R},t_{n}^{R})}\left(\frac{P_{t,T%_{RS}}}{P_{t,T_{RE}}}-1\right)+r_{t}^{S,adj}\right]= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ divide start_ARG 1 end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG ( divide start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_t , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG - 1 ) + italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S , italic_a italic_d italic_j end_POSTSUPERSCRIPT ]
=P0,Tp𝔇(t0A,tnA){1𝔇(t0R,tnR)(P0,TRSP0,TREtTp(TRS,TRE)1)+𝔼Tp[rtS,adj]}absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴1𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅subscript𝑃0subscript𝑇𝑅𝑆subscript𝑃0subscript𝑇𝑅𝐸superscriptsubscript𝑡subscript𝑇𝑝subscript𝑇𝑅𝑆subscript𝑇𝑅𝐸1superscript𝔼superscriptsubscript𝑇𝑝delimited-[]superscriptsubscript𝑟𝑡𝑆𝑎𝑑𝑗\displaystyle=P_{0,T_{p}}\mathfrak{D}(t_{0}^{A},t_{n}^{A})\left\{\frac{1}{%\mathfrak{D}(t_{0}^{R},t_{n}^{R})}\left(\frac{P_{0,T_{RS}}}{P_{0,T_{RE}}}%\mathfrak{C}_{t}^{T_{p}}(T_{RS},T_{RE})-1\right)+\mathbb{E}^{\mathbb{Q}^{T_{p}%}}\left[r_{t}^{S,adj}\right]\right\}= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) { divide start_ARG 1 end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG ( divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT ) - 1 ) + blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S , italic_a italic_d italic_j end_POSTSUPERSCRIPT ] }
=P0,Tp𝔇(t0A,tnA)𝔇(t0R,tnR){P0,TRSP0,TREtTp(TRS,TRE)1+𝔇(t0R,tnR)𝔼Tp[rtS,adj]}.absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅subscript𝑃0subscript𝑇𝑅𝑆subscript𝑃0subscript𝑇𝑅𝐸superscriptsubscript𝑡subscript𝑇𝑝subscript𝑇𝑅𝑆subscript𝑇𝑅𝐸1𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅superscript𝔼superscriptsubscript𝑇𝑝delimited-[]superscriptsubscript𝑟𝑡𝑆𝑎𝑑𝑗\displaystyle=P_{0,T_{p}}\frac{\mathfrak{D}(t_{0}^{A},t_{n}^{A})}{\mathfrak{D}%(t_{0}^{R},t_{n}^{R})}\left\{\frac{P_{0,T_{RS}}}{P_{0,T_{RE}}}\mathfrak{C}_{t}%^{T_{p}}(T_{RS},T_{RE})-1+\mathfrak{D}(t_{0}^{R},t_{n}^{R})\mathbb{E}^{\mathbb%{Q}^{T_{p}}}\left[r_{t}^{S,adj}\right]\right\}.= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG { divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT ) - 1 + fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S , italic_a italic_d italic_j end_POSTSUPERSCRIPT ] } .

Assume now that 𝔼Tp[rtS,adj]=r0S,adjsuperscript𝔼superscriptsubscript𝑇𝑝delimited-[]superscriptsubscript𝑟𝑡𝑆𝑎𝑑𝑗superscriptsubscript𝑟0𝑆𝑎𝑑𝑗\mathbb{E}^{\mathbb{Q}^{T_{p}}}\left[r_{t}^{S,adj}\right]=r_{0}^{S,adj}blackboard_E start_POSTSUPERSCRIPT blackboard_Q start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S , italic_a italic_d italic_j end_POSTSUPERSCRIPT ] = italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S , italic_a italic_d italic_j end_POSTSUPERSCRIPT,so that we can simplify the above as

PVflowsubscriptPVflow\displaystyle\mathrm{PV}_{\mathrm{flow}}roman_PV start_POSTSUBSCRIPT roman_flow end_POSTSUBSCRIPT=P0,Tp𝔇(t0A,tnA)𝔇(t0R,tnR){P0,TRSP0,TREtTp(TRS,TRE)1+𝔇(t0R,tnR)r0S,adj}absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅subscript𝑃0subscript𝑇𝑅𝑆subscript𝑃0subscript𝑇𝑅𝐸superscriptsubscript𝑡subscript𝑇𝑝subscript𝑇𝑅𝑆subscript𝑇𝑅𝐸1𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅superscriptsubscript𝑟0𝑆𝑎𝑑𝑗\displaystyle=P_{0,T_{p}}\frac{\mathfrak{D}(t_{0}^{A},t_{n}^{A})}{\mathfrak{D}%(t_{0}^{R},t_{n}^{R})}\left\{\frac{P_{0,T_{RS}}}{P_{0,T_{RE}}}\mathfrak{C}_{t}%^{T_{p}}(T_{RS},T_{RE})-1+\mathfrak{D}(t_{0}^{R},t_{n}^{R})r_{0}^{S,adj}\right\}= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG { divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT ) - 1 + fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S , italic_a italic_d italic_j end_POSTSUPERSCRIPT }
=P0,Tp𝔇(t0A,tnA)𝔇(t0R,tnR){P0,TRSP0,TREtTp(TRS,TRE)1+𝔇(t0R,tnR)(r0Sr~0S)}absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅subscript𝑃0subscript𝑇𝑅𝑆subscript𝑃0subscript𝑇𝑅𝐸superscriptsubscript𝑡subscript𝑇𝑝subscript𝑇𝑅𝑆subscript𝑇𝑅𝐸1𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅superscriptsubscript𝑟0𝑆superscriptsubscript~𝑟0𝑆\displaystyle=P_{0,T_{p}}\frac{\mathfrak{D}(t_{0}^{A},t_{n}^{A})}{\mathfrak{D}%(t_{0}^{R},t_{n}^{R})}\left\{\frac{P_{0,T_{RS}}}{P_{0,T_{RE}}}\mathfrak{C}_{t}%^{T_{p}}(T_{RS},T_{RE})-1+\mathfrak{D}(t_{0}^{R},t_{n}^{R})\left(r_{0}^{S}-%\widetilde{r}_{0}^{S}\right)\right\}= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG { divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT ) - 1 + fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) ( italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT - over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ) }
=P0,Tp𝔇(t0A,tnA)𝔇(t0R,tnR){P0,TRSP0,TREtTp(TRS,TRE)1+𝔇(t0R,tnR)(r0S1𝔇(t0R,tnR)(P0,TRSP0,TRE1))}absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅subscript𝑃0subscript𝑇𝑅𝑆subscript𝑃0subscript𝑇𝑅𝐸superscriptsubscript𝑡subscript𝑇𝑝subscript𝑇𝑅𝑆subscript𝑇𝑅𝐸1𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅superscriptsubscript𝑟0𝑆1𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅subscript𝑃0subscript𝑇𝑅𝑆subscript𝑃0subscript𝑇𝑅𝐸1\displaystyle=P_{0,T_{p}}\frac{\mathfrak{D}(t_{0}^{A},t_{n}^{A})}{\mathfrak{D}%(t_{0}^{R},t_{n}^{R})}\left\{\frac{P_{0,T_{RS}}}{P_{0,T_{RE}}}\mathfrak{C}_{t}%^{T_{p}}(T_{RS},T_{RE})-1+\mathfrak{D}(t_{0}^{R},t_{n}^{R})\left(r_{0}^{S}-%\frac{1}{\mathfrak{D}(t_{0}^{R},t_{n}^{R})}\left(\frac{P_{0,T_{RS}}}{P_{0,T_{%RE}}}-1\right)\right)\right\}= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG { divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT ) - 1 + fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) ( italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG ( divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG - 1 ) ) }
=P0,Tp𝔇(t0A,tnA)𝔇(t0R,tnR){P0,TRSP0,TRE(tTp(TRS,TRE)1)+𝔇(t0R,tnR)r0S}.absentsubscript𝑃0subscript𝑇𝑝𝔇superscriptsubscript𝑡0𝐴superscriptsubscript𝑡𝑛𝐴𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅subscript𝑃0subscript𝑇𝑅𝑆subscript𝑃0subscript𝑇𝑅𝐸superscriptsubscript𝑡subscript𝑇𝑝subscript𝑇𝑅𝑆subscript𝑇𝑅𝐸1𝔇superscriptsubscript𝑡0𝑅superscriptsubscript𝑡𝑛𝑅superscriptsubscript𝑟0𝑆\displaystyle=P_{0,T_{p}}\frac{\mathfrak{D}(t_{0}^{A},t_{n}^{A})}{\mathfrak{D}%(t_{0}^{R},t_{n}^{R})}\left\{\frac{P_{0,T_{RS}}}{P_{0,T_{RE}}}\left(\mathfrak{%C}_{t}^{T_{p}}(T_{RS},T_{RE})-1\right)+\mathfrak{D}(t_{0}^{R},t_{n}^{R})r_{0}^%{S}\right\}.= italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_A end_POSTSUPERSCRIPT ) end_ARG start_ARG fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_ARG { divide start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT 0 , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ( fraktur_C start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT italic_R italic_E end_POSTSUBSCRIPT ) - 1 ) + fraktur_D ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT , italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT } .

4. Numerics

4.1. Zero-coupon dynamics

In Figure6, we analyse the impact of the parameter, α𝛼\alphaitalic_α in the Exponential kernel case (Section2.3.1)andH𝐻Hitalic_H in the Riemann-Liouville case (Section2.3.2),on the dynamics of the zero-coupon bond over a time span [0,1]01[0,1][ 0 , 1 ] and considering a constant curve θ()=6%𝜃percent6\theta(\cdot)=6\%italic_θ ( ⋅ ) = 6 %.In order to compare them properly, the underlying Brownian path is the same for all kernels.Unsurprisingly, we observe that the Riemann-Liouville case creates a lot more variance of the dynamics.

Interest rate convexity in a Gaussian framework (7)

Interest rate convexity in a Gaussian framework (8)

4.2. Impact of the roughness on convexity

We compare in Figure7 the impact of the (roughness of the) kernel on the convexity adjustment.We consider a constant curveθ()=6%𝜃percent6\theta(\cdot)=6\%italic_θ ( ⋅ ) = 6 % and(t,𝔱1,𝔱2,τ)=(1,2,3,2)𝑡subscript𝔱1subscript𝔱2𝜏1232(t,\mathfrak{t}_{1},\mathfrak{t}_{2},\tau)=(1,2,3,2)( italic_t , fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_τ ) = ( 1 , 2 , 3 , 2 ).Asα𝛼\alphaitalic_α tends to zero (exponential kernel case) and asH𝐻Hitalic_H tends to1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG (Riemann-Liouville case),the convexity adjustments converge to the same value (as expected),approximately equal to2.7182.7182.7182.718.In Figure8,we consider Example2.4.2,shifting away from a standard Brownian driver.

Interest rate convexity in a Gaussian framework (9)

Interest rate convexity in a Gaussian framework (10)

Interest rate convexity in a Gaussian framework (11)

Interest rate convexity in a Gaussian framework (12)

Disclosure of interest

We confirm that there are no relevant financial or non-financial competing interests to report.

References

  • [1]E.Alòs, O.Mazet, and D.Nualart, Stochastic calculus withrespect to Gaussian processes, The Annals of Probability, 29 (2001),pp.766–801.
  • [2]L.Andersen and V.Piterbarg, Interest Rate Modeling, AtlanticFinancial Press, 2010.
  • [3]A.Basse-O’Connor and S.-E. Graversen, Path and semimartingaleproperties of chaos processes, Stochastic Processes and their Applications,120 (2010), pp.522–540.
  • [4]C.Bayer, P.Friz, and J.Gatheral, Pricing under rough volatility,Quantitative Finance, 16 (2016), pp.887–904.
  • [5]O.Bonesini, A.Jacquier, and A.Pannier, Rough volatility,path-dependent PDEs and weak rates of convergence.arXiv:2304.03042, 2023.
  • [6]D.Brigo and F.Mercurio, Interest rate models-theory and practice:with smile, inflation and credit, vol.2, Springer, 2006.
  • [7]R.Brotherton-Ratcliffe and B.Iben, Yield curve applications ofswap products, Schwartz, RJ, Smith, CW, Advanced Strategies in FinancialRisk Management, New York Institute of Finance, New York, (1993),pp.400–450.
  • [8]O.ElEuch, M.f*ckasawa, and M.Rosenbaum, The microstructuralfoundations of leverage effect and rough volatility, Finance andStochastics, 22 (2018), pp.241–280.
  • [9]B.Flesaker, Arbitrage free pricing of interest rate futures andforward contracts, The Journal of Futures Markets (1986-1998), 13 (1993),p.77.
  • [10]M.f*ckasawa, Volatility has to be rough, Quantitative Finance, 21(2021), pp.1–8.
  • [11]D.García-Lorite and R.Merino, Convexity adjustments à laMalliavin.arXiv:2304.13402, 2023.
  • [12]J.Gatheral, T.Jaisson, and M.Rosenbaum, Volatility is rough,Quantitative Finance, 18 (2018), pp.933–949.
  • [13]J.Hull and A.White, Pricing interest-rate-derivative securities,The review of financial studies, 3 (1990), pp.573–592.
  • [14]A.Jacquier, A.Muguruza, and A.Pannier, Rough multifactorvolatility for SPX and VIX options.arXiv:2112.14310, 2021.
  • [15]A.Jacquier and M.Oumgari, Deep curve-dependent PDEs for affinerough volatility, SIAM Journal on Financial Mathematics, 14 (2023),pp.353–382.
  • [16]G.Kirikos and D.Novak, Convexity conundrums: Presenting atreatment of swap convexity in the hall-white framework, Risk Magazine, 10(1997), pp.60–61.
  • [17]B.Øksendal, Stochastic differential equations, Springer, 2003.
  • [18]A.Pelsser, Mathematical foundation of convexity correction,Quantitative Finance, 3 (2003), pp.59–65.
  • [19]P.Ritchken and L.Sankarasubramanian, Averaging and deferredpayment yield agreements, The Journal of Futures Markets (1986-1998), 13(1993), p.23.
  • [20]F.Russo and C.A. Tudor, On bifractional Brownian motion,Stochastic Processes and their Applications, 116 (2006), pp.830–856.
  • [21]O.Vasicek, An equilibrium characterization of the term structure,Journal of Financial Economics, 5 (1977), pp.177–188.
Interest rate convexity in a Gaussian framework (2024)

References

Top Articles
Latest Posts
Article information

Author: Horacio Brakus JD

Last Updated:

Views: 5852

Rating: 4 / 5 (71 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Horacio Brakus JD

Birthday: 1999-08-21

Address: Apt. 524 43384 Minnie Prairie, South Edda, MA 62804

Phone: +5931039998219

Job: Sales Strategist

Hobby: Sculling, Kitesurfing, Orienteering, Painting, Computer programming, Creative writing, Scuba diving

Introduction: My name is Horacio Brakus JD, I am a lively, splendid, jolly, vivacious, vast, cheerful, agreeable person who loves writing and wants to share my knowledge and understanding with you.